

Insch Hydrology Report

Final Report May 2018

Aberdeenshire Council

JBA Project Manager

Caroline Anderton BSc MSc CEnv CSci MCIWEM C.WEM Unit 2.1 Quantum Court Research Avenue South Heriot Watt Research Park Riccarton Edinburgh EH14 4AP

Revision History

Revision Ref / Date Issued	Amendments	Issued to
P01 / 04 May 2018	-	Alistair Scotland and Lee Watson, Aberdeenshire Council
P02 / 24 May 2018	Table 1-1 amended; Figure 3-1 and 3-2 added; text added and amended on pages 10, 14 and 17.	Alistair Scotland and Lee Watson, Aberdeenshire Council
C01 / 3 April 2019	Published.	Alistair Scotland and Lee Watson, Aberdeenshire Council

Contract

This report describes work commissioned by Gavin Penman, on behalf of Aberdeenshire Council, on 10 October 2017 by Purchase Order Number 1095192. Dougall Baillie's representative for the contract was Scott Macphail and Aberdeenshire Council's representative for the contract was Alistair Scotland. Grace Thompson, Briony McIntosh and David Cameron of JBA Consulting carried out this work.

Prepared by	Briony McIntosh MEarthSci Assistant Analyst
Prepared by	Grace Thompson BSc MSc Assistant Analyst
Reviewed by	David Cameron BSc PhD MCIWEM CWEM CSci Principal Analyst
Reviewed by	Caroline Anderton BSc MSc CEnv CSci MCIWEM C.WEM Technical Director

Purpose

This document has been prepared as a Final Report for Aberdeenshire Council. JBA Consulting accepts no responsibility or liability for any use that is made of this document other than by the Client for the purposes for which it was originally commissioned and prepared.

JBA Consulting has no liability regarding the use of this report except to Aberdeenshire Council.

JBA

Acknowledgements

JBA wishes to thank SEPA for provision of the hydrometric data and Aberdeenshire Council for the supply of data.

Copyright

© Jeremy Benn Associates Limited 2019

Carbon Footprint

A printed copy of the main text in this document will result in a carbon footprint of 256g if 100% postconsumer recycled paper is used and 325g if primary-source paper is used. These figures assume the report is printed in black and white on A4 paper and in duplex.

JBA is aiming to reduce its per capita carbon emissions.

Executive Summary

This report describes historical flooding and input hydrology estimates developed for use in the Insch Flood Protection Study for Aberdeenshire Council. The Shevock has a history of flooding dating back to at least 1864/5 with the main risk area at Insch. In addition to direct flood risk from the fluvial Shevock, flood risk at Insch is complicated by the influence of three small watercourses (the Valentines, Mill of Rothney and Newton of Rothney Burns). Hydrology estimates were required as input to a linked 1D/2D hydraulic model of the Shevock for use in flood mapping. Those estimates included the following.

- Peak flow estimates on the:
 - The Shevock at the upstream boundary of the model. The FEH Statistical pooling approach has been adopted with a GL distribution and following investigation of several potential donor sites, the Deveron at Avochie (9001) used to adjust QMED. Peak flows at this location will be input directly to the model. The 0.5% Annual Probability (AP, 200 year flood) event was estimated to be circa 17.71 m³/s.
 - The Shevock at the River Urie confluence. The FEH Statistical pooling method was adopted with a GEV distribution and using the Deveron at Avochie as a donor for QMED. The 0.5% Annual Probability (AP, 200 year flood) was estimated to be circa 24.42 m³/s for the Shevock. These estimates will be used as a downstream model boundary check and comparisons made with both the GL and GEV distribution flows.
 - Valentines Burn, Mill of Rothney Burn and Newton of Rothney Burn at their confluence with the Shevock. A variety of methods were investigated for peak flow estimation, and the adopted method in each case was the FEH Rainfall Runoff method (on the basis of the FEH Rainfall Runoff method yielding similar time to peak values as those calculated from observed data a nearby small catchment gauge, the level only gauge at Mill of Keithfield). The 0.5% Annual Probability (AP, 200 year flood) was estimated to be 4.60 m³/s, 4.70 m³/s and 4.02 m³/s for the Valentines, Mill of Rothney and Newton of Rothney Burns respectively using their default critical storm durations (these will be adjusted during model runs). With respect to modelling for design events, the peak flows from the FEH Rainfall Runoff method will be used to scale hydrographs derived from ReFH units within the model. Catchment areas within the ReFH units will be increased to account for additional inflows between major laterals. In cases where there is no suitable tributary a distributed lateral inflow will be used. Final determination of this will be made at the modelling stage.
- Fluvial hydrographs and critical storm durations. All watercourses are ungauged therefore hydrograph inputs into the hydraulic model will be represented by ReFH units scaled to the appropriate design flow. The critical storm duration for the Shevock based on the FEH Rainfall Runoff method is 9.25 h. The tributary watercourses have very different catchment areas and therefore storm durations. However, the difference between peak flows estimated using a long (9.25 h) and short (4.25 h) storm duration was found to be minimal, and a single duration of 9.25 h will be adopted for the hydraulic modelling.

Contents

Executi	ve Summaryiii
1	Introduction1
1.1 1.2	Report objectives and approach
2	Flood History7
2.1 2.2	Introduction
3	Flood Estimation: The Shevock and Overall Approach10
3.1 3.2	Peak flows: overall approach 10 The Shevock Flood Estimation 11
4	Flood Estimation: Valentines, Mill of Rothney and Newton of Rothney Burns15
4.1 4.2	Peak flows: overall approach
5	Comparison with Previous Studies
6	Conclusions
Append	licesI
А	Statistical Method- Additional OutputsI
В	ReFH2 Additional OutputsXXV
С	Technical Review CertificateXXX

List of Figures

Figure 1-1: Catchment and hydrometry	5
Figure 1-2: Catchment peak flow locations	6
Figure 2-1: Key flood events in Insch	8
Figure 3-1: The Shevock upstream of the Mill of Rothney growth curves	14
Figure 3-2: The Shevock at the Urie confluence growth curves	14

JBA consulting

List of Tables

Table 1-1:	Catchment Descriptors for the Shevock flow estimation points	2
Table 1-2:	Catchment Descriptors for the potential QMED donors	2
Table 1-3:	Catchment descriptors for the tributaries	3
Table 1-4:	Hydrometry summary	3
Table 2-1:	Historical Flood Events	7
Table 2-2:	Peak flow estimates from the 2005 EnviroCentre study	9
Table 3-1:	Peak flow estimates on The Shevock upstream of the Mill of Rothney and upstream model boundary with adjusted area and default storm duration	12
Table 3-2:	The Shevock at the River Urie confluence (with adjusted area and default stor duration) peak flow estimates	۳m 13
Table 3-3:	Peak flow estimates on The Shevock downstream of Newton of Rothney with adjusted area	13
Table 4-1:	Storm duration comparison at Mill of Keithfield	16
Table 4-2:	Valentines Burn with adjusted area and default storm duration peak flow comparison	17
Table 4-3:	Mill of Rothney with adjusted area and default storm duration peak flow comparison	17
Table 4-4:	Newton of Rothney with adjusted area and default storm duration peak flow comparison	18
Table 4-5:	RR peak flow estimates for the Valentines Burn for the two storm durations	19
Table 4-6:	RR peak flow estimates for the Newton of Rothney Burn for the two storm durations	20
Table 4-7:	RR peak flow estimates for the Mill of Rothney Burn for the two storm duration	าร 20
Table 5-1:	The Shevock EnviroCentre 2005 and JBA 2018 peak flow comparison	21

Abbreviations

1D	One Dimensional (modelling)
2D	Two Dimensional (modelling)
ALTBAR	Mean catchment altitude (m above sea level)
AMAX	Annual Maximum
ARF	Areal Reduction Factor
BFIHOST	Base Flow Index estimated from soil type
CWI	Catchment Wetness Index
DPLBAR	Index describing catchment size and drainage path configuration
DS	Downstream
FARL	FEH index of flood attenuation due to reservoirs and lakes
FEH	Flood Estimation Handbook
FPEXT	FEH index describing floodplain extent
FRM	Flood Risk Mapping
GEV	General Extreme Value Distribution
GL	General Logistic Distribution
mAOD	metres Above Ordnance Datum
NGR	National Grid Reference
OS	Ordnance Survey
OS NGR	Ordnance Survey National Grid Reference
QMED	Median Annual Flood (with return period 2 years)
ReFH	Revitalised Flood Hydrograph method
RR	Rainfall-Runoff
SAAR	Standard Average Annual Rainfall (mm)
SCF	Spreadsheet compatible format (file from Hydrolog)
SEPA	Scottish Environment Protection Agency
SPR	Standard percentage runoff
SPRHOST	Standard percentage runoff estimated from soil type
TBR	Tipping Bucket Raingauge
Тр	Time to Peak
URBEXT	FEH index of fractional urban extent
Ζ	Statistical significance indicator

1 Introduction

1.1 Report objectives and approach

The purpose of this report is to provide details of the hydrology required to drive the hydraulic modelling and associated flood mapping for The Shevock from just upstream of Insch at approximate Ordnance Survey National Grid Reference (OS NGR) NJ 59800 28380 to its confluence with the River Urie downstream of Insch at OS NGR NJ 66972 28621. Peak flow estimates were required for the following watercourses:

- The Shevock at the upstream and downstream extent of the model. The upstream peak flows will form a direct model input and the downstream peak flows will be used for checking model outputs.
- The Valentine Burn and two unnamed tributaries (Newton of Rothney and Mill of Rothney) at Insch. In addition, during hydraulic modelling, all tributaries >3 km² that discharge into The Shevock will be included as lateral inflows e.g. using ReFH units.
- In addition, the Burn of Keithfield was important for storm duration analysis for the small burn catchments.

FEH Statistical and a variety of Rainfall Runoff alternatives were explored for peak flow estimation. The recommended values are provided within the main body of the report with supplementary information provided in the Appendix.

The hydrographs required for the hydraulic modelling will utilise a ReFH hydrograph which will be scaled to the peak flows recommended in this report. This will be undertaken within the modelling software at the modelling stage.

1.2 Catchment summary and relevant hydrometry

The Shevock is a western tributary of the River Urie. It originates approximately 10 km northwest of Insch in the region of Gartly Moor and flows south and then east towards the town. It has a catchment area of approximately 40 km² at its confluence with the Urie, approximately 4 km downstream of Insch. In addition to the main Shevock, several sub catchments were of interest in this study including the right bank Mill of Rothney and Newton of Rothney tributaries and the left bank Valentines Burn (Figure 1-1). Historical flooding has been recorded on The Shevock since 1864/5 (section 2). There are no formal or informal flood defences in the area.

Elevation ranges from approximately 420 metres above Ordnance Datum (mAOD) at Gartly Moor to 90 mAOD at the Shevock-Urie confluence. The average annual rainfall is 868 mm (catchment descriptors derived from the FEH CD-ROM v3 for The Shevock at the Urie confluence). The catchment is predominantly rural (URBEXT₂₀₀₀ of 0.0078). The underlying bedrock geology is Ordovician to Silurian aged igneous and metamorphic units overlain by superficial glacial deposits¹. The overall catchment is dominated by relatively impermeable bedrock and superficial deposits and will therefore exhibit a moderate response to rainfall as reflected in the catchment BIFHOST (baseflow index based on soil type) of 0.569 and SPRHOST (standard percentage runoff based on soil type) of 32%. Catchment descriptors for the catchment are summarised in Table 1-1 and Table 1-3.

There are no gauging stations within the catchment. The nearest primary gauging station (which records both stage and flow over high and low flows) is the Urie at Pitcaple (SEPA gauging station number 11004) located on the River Urie approximately 7 km downstream of the Shevock- Urie confluence. The Urie at Old Rayne (11007) is a level only gauge on the River Urie located approximately 350 m downstream of the Shevock-Urie confluence. The Mill of Keithfield is a level only gauge located approximately 21 km east of Insch and was used in storm duration analysis for the smaller watercourses. Catchment descriptors of potential QMED donor gauges are provided in Table 1-2. Raingauge coverage is also limited: Insch No.2 at Insch and Old Mill of Newton near the Shevock confluence with the Urie are the closest raingauges. Milton of Noth and Cabrach are located to the west of Insch near the headwaters. Rothienorman to the northeast of Insch was used for storm duration analysis at Mill of Keithfield. A summary of relevant hydrometry is provided in Table 1-4 and the locations of peak flows in Figure 1-2.

¹ British Geological Survey http://mapapps.bgs.ac.uk/geologyofbritain/home.html [Accessed: December 2017]

Catchment Descriptors	The Shevock at the Urie confluence	The Shevock downstream of Newton of Rothney	The Shevock upstream of the Mill of Rothney	The Shevock at the upstream model boundary
Area (km ²)	40.25 adjusted (39.53 default)	35.65 adjusted (35.09 default)	25.20 adjusted (24.59 default)	21.25 default (21.90 adjusted)
ALTBAR (m above sea level)	204	214	238	247
BFIHOST	0.569	0.569	0.571	0.566
DPLBAR (km)	9.74	6.74	6.99	4.45
FARL	1	1	1	1
FPEXT	0.0417	0.0397	0.03	0.0299
SAAR (mm)	868	874	891	898
SAAR4170 (mm)	867	876	890	896
SPRHOST (%)	32.32	32.45	32.95	33.49
URBEXT 1990	0.007 adjusted (0.0068 default)	0.008 adjusted (0.0077 default)	0.001 adjusted (0.001 default)	0.000 adjusted (0.000 default)
URBEXT 2000	0.008 adjusted (0.0078 default)	0.009 adjusted (0.0087 default)	0.000 adjusted (0.000 default)	0.000 adjusted (0.000 default)

Table 1-1: Catchment Descriptors for the Shevock flow estimation points

Table 1-2: Catchment Descriptors for the potential QMED donors

Catchment Descriptors	The Deveron at Avochie gauging station (SEPA station no. 9001)	The Bogie at Redcraig gauging station (SEPA station no. 9004)	The Urie at Pitcaple gauging station (SEPA station no. 11004)
Area (km ²)	444.91 default	182.43 default	195.60 adjusted (195.44 default)
ALTBAR (m above sea level)	above 329 297 el)		206
BFIHOST	0.505	0.567	0.562
DPLBAR (km)	29.26	14.51	15.36
FARL	0.998	0.998	0.996
FPEXT	0.0343	0.0313	0.0458
SAAR (mm)	988	955	0.411
SAAR4170 (mm)	1078	1045	870
SPRHOST (%)	37.32	32.61	882
URBEXT 1990 0.0017 default		0.0012 default	0.003 adjusted (0.0028 default)

Catchment Descriptors	Valentines Burn	Mill of Rothney	Newton of Rothney	Mill of Keithfield
Area (Km ²)	3.18 adjusted (3.23 default)	3.40 adjusted (3.21 default)	2.76 adjusted (2.69 default)	18.36 default
ALTBAR (m above sea level)	152	173	150	112
BFIHOST	0.561	0.573	0.565	0.587
DPLBAR (km)	1.73	1.99	1.52	3.55
FARL	1	1	1	0.998
FPEXT	0.0558	0.056	0.0613	0.0415
FPDBAR	0.41	1.188	0.397	0.332
SAAR (mm)	833	847	832	831
SAAR4170 (mm)	834	865	833	819
SPRHOST (%)	31.44	30.89	31.26	28.82
URBEXT 1990	0.029 adjusted (0.027 default)	0.000 adjusted (0.000 default)	0.000 adjusted (0.000 default)	0.0003 adjusted (0.0003 default)
URBEXT 2000	0.038 adjusted (0.037 default)	0.000 adjusted (0.000 default)	0.000 adjusted (0.000 default)	0.0001 adjusted (0.0001 default)

Table 1-3: Catchment descriptors for the tributaries

Table 1-4: Hydrometry summary

Station number	Waterco urse	Name	Туре	Periods of record (water years)	Comments
11004	Urie	Pitcaple	Primary	1984 - present	The gauge at Pitcaple is located in an open channel section (with cableway) of the River Urie c. 10 m upstream of a minor road bridge. A further two bridges are located c. 1.8 km downstream of the gauging station. The stilling well is located in the gauging hut on the left bank and provides telemetered level data in real time. The level record dates from 1984. The minor bridge is deemed to have a significant influence on water levels at the gauge. The two downstream bridges are not deemed to influence water levels. During floods, bypassing occurs where water cuts the meander upstream of the gauge flowing over the right-hand floodplain. It re-joins the river downstream of the gauging station. Gaugings pre-1988 referenced to a different datum. A new rating was developed by JBA Consulting on behalf of SEPA using a 1D unsteady hydraulic model. This rating will be checked using linked

					Council as part of the Inverture study.
11007	Urie	Old Rayne	Water level gauge	2009 - 2015	Level only gauge. Site closed due to issues with location. Limited record of suitable data. Non-cableway site. Minimal higher gaugings due to logistics ² .
9004	Bogie	Redcraig	Primary	1980- 2016	Considered for use as a QMED donor. The gauge at Redcraig is located in an open channel section with cableway. There is a stable broken rubble weir control. The site is cableway gauged. The peak flow rating was derived from current meter gauging's up to 39 currecs (about 1.2 QMED); simple extrapolation beyond. It has good low flow calibration but bypassing occurs at flows above 1.8m, water shortcuts the bend of the river on right bank (RB). There is a gauge board record downstream (DS) of site for 1973-1981. The gauge board was lowered in May 1996 and again in November 2003. Two peak flow ratings pre and post change of gauge board have been derived by SEPA ³ .
9001	Deveron	Avochie	Primary	1959- 2016	QMED donor. The gauge at Avochie is a velocity area station approximately 35 m wide. It is cableway rated with stable rubber weir control, rather insensitive. The inlet pipes periodically silted in early 1980's, extended in March 1985. Peak flow rating was revised in 1999 and a new single rating was judged to be suitable for whole period of record. Well-fitted rating derived from current meter gauging, simple extrapolation beyond. Some gaugings up to 2.1 m. Rating revised in 2016 ³ .
10004	Keithfield Burn	Mill of Keithfield	Primary	2009 - present	Used in basic LAG analysis to inform storm duration and choice of peak flow estimate method. Level only gauge, non-cableway site. Suffers from weed issues during the summer months. Ratings

² Email correspondence with Danni Murren (SEPA) dated 09/01/2018.

³ NRFA. http://nrfa.ceh.ac.uk/data/search Accessed April 2018.

					under review ² .
367364	-	Old Mill of Newton	Raingauge	Tipping bucket raingauge	Raingauge located to the northeast of Insch. Used in basic storm duration analysis along with Old Rayne river gauge.
115239	-	Rothiemo rman	Raingauge	Tipping bucket raingauge	Raingauge located 11.5 km to the northeast of Insch. Used in basic storm duration analysis along with Mill of Keithfield river gauge.
	-	Insch No.2	Raingauge	Manual	SEPA raingauge located at Insch to be used for observed rainfall inputs for the laterals.
11523	-	Milton of Noth	Raingauge	Tipping bucket raingauge	High catchment raingauge located in 'frost pocket' areas so suffer more ice and snow than other gauges. Data from 2009 ⁴ .
234176	-	Cabrach	Raingauge	Tipping bucket raingauge	Approx. 26 km west of Insch. High catchment raingauge located in 'frost pocket' areas so suffer more ice and snow than other gauges ⁴ .

Figure 1-1: Catchment and hydrometry

Contains Ordnance Survey (C) Crown copyright and database right 2018 (OS 0100020767)

⁴ Email correspondence with Danni Murren (SEPA) email dated 09/03/18.

Figure 1-2: Catchment peak flow locations

Contains Ordnance Survey (C) Crown copyright and database right 2018 (OS 0100020767)

2 Flood History

2.1 Introduction

The Shevock has been susceptible to flooding over the past several decades with the earliest recorded flooding dating back to 1864/5 (Table 2-1). Insch falls within Potentially Vulnerable Area (PVA) 06/11 and has a history of flooding. Flood risk is primarily from the Shevock but also the Valentines Burn on the left bank, additionally Insch has experienced pluvial flooding. The worst flooding occurred in November 2002 resulting in evacuation of the nursing home and closure of roads and railway.

A review of historic flooding was carried out using data collected from the following: Aberdeenshire Council, the Scottish Environment Protection Agency (SEPA), the Chronology of British Hydrological Events (CBHE) and readily available internet sources. The historical flood record for Insch is documented in Table 2-1 below.

Date	Description	Source
1864	Overtopping of Shevock Burn resulting in flooding. [No specific date given, could be the 1865 flood referenced in terms of water year]	SEPA FRM Strategy ⁵
1865	1865 January: "The Shirach Burn [Urie tributary] at Insch, which, like the dangerous Rothes burn, rises rapidly, was sweeping down on the fields below on Thursday, and must be worse now (Friday morning), as the wind is blowing very strong." - Edinburgh Courant. [R. Don]	CBHE ⁶ (assumed to refer to the Shevock)
1879	Railway line flooded from a burn in Insch	SEPA FRM Strategy ⁵
1903	Overtopping of Shevock Burn resulting in minor damage	SEPA FRM Strategy ⁵
1930	Overtopping of Shevock Burn resulting in minor damage	SEPA FRM Strategy ⁵
1995	Colloquial evidence of flooding to a nursing home in Insch, although no SEPA evidence to confirm this event	SEPA FRM Strategy ⁵
2002	Highest impact flood on record occurred in November 2002, when a nursing home had to be evacuated due to flooding by the Shevock Burn; residential properties were also affected.	SEPA FRM Strategy ⁵
	"Flooding has closed a number of roads and a large part of the Aberdeen to Inverness railway lineHeavy rain in the area has made conditions hazardous. Railtrack said the rail line had been closed between Forres and Insch due to four separate instances of flooding."	BBC News http://news.bbc.co.uk/1/hi/scotland/24 81223.stm? [Accessed: 16.11.17]
	"At Insch in Aberdeenshire, 41 elderly residents of a nursing home had to be carried to safety by firefighters after the Shevock Burn, a tributary of the River Urie, bust its banks, leaving 3ft of water surrounding the single-storey building."	The Scotsman https://www.scotsman.com/news/wors t-flooding-in-30-years-1-629853 [Accessed: December 2017]
	Drumdaroch House and Willow Bank, Insch Flood photos	Supplied by SEPA
2004	June 2004 - Shevock Burn overtopped affecting properties in southwest Insch. Floods were exacerbated by drainage systems being unable to cope with the heavy rain.	SEPA FRM Strategy ⁵
	August 2004 - Valentine Burn overtopped affecting	SEPA FRM Strategy ⁵

Table 2-1: Historical Flood Events

⁵ North-East Flood Risk Management Strategy http://apps.sepa.org.uk/FRMStrategies/pdf/lpd/LPD_06_Full.pdf [Accessed: 10 November 2017]

⁶ British Chronology of Hydrological Events http://cbhe.hydrology.org.uk/results.php [Accessed: December 2017]

	property in north west Insch. Floods were exacerbated by drainage systems being unable to cope with the heavy rain.	
2007	"firefighters had to pump away flood water threatening a nursing home, which has 39 residents, at Insch in Aberdeenshire."	BBC News, found online at: < http://news.bbc.co.uk/1/hi/scotland/nor th_east/7107078.stm> [Accessed:16.11.17]
2008	B9002 flooded due to surface water flooding	SEPA FRM Strategy ⁵
2015	26 properties damaged as a result of flooding events in December 2015	SEPA FRM Strategy ⁵
2016	"later flooding near Insch again disrupted rail travel" in January 2016	BBC News < http://www.bbc.co.uk/news/uk- scotland-north-east-orkney-shetland- 35254350> [Accessed: 16.11.17]
	Photographs of flooding at Insch Airfield	Grampian Microlight and Flying Club < https://www.gmfc- insch.co.uk/index.php/news/50- flooding-january-2016> [Assessed: 16.11.17]

In summary, Insch has experienced flooding in 1864, 1865, 1879, 1903, 1930, 1995, 2002, 2004, 2007, 2008, 2015 and 2016. Key events are summarised below in Figure 2-1.

Figure 2-1: Key flood events in Insch

JBA

2.2 **Previous Flood estimates**

EnviroCentre undertook a surface drainage network review at Insch in 20057. The study considered the capacity of the drainage network through Insch and included estimation of peak flows on the Shevock and Valentines Burn. A Statistical Pooling and a 'catchment characteristics'⁸ approach were considered for peak flow estimation. "On the basis of the diversity in location and limited station year data for a homogenous fit, it [was] decided to adopt a conservative approach and use the higher flows generated by the catchment characteristics methods for design flows"7. These peak flow estimates are provided in Table 2-2. It should be noted the catchment area of Shevock was to its confluence with the Valentines Burn.

Table 2-2: Peak flow estimates from the 2005 EnviroCentre study	

Return Period (years)	Annual Probability [AP] (T)	The Shevock using catchment descriptors (m³/s)	Valentines Burn using catchment descriptors (m ³ /s)
2	50	10.81	1.68
5	20	14.95	2.39
10	10	17.70	2.83
25	4	22.68	3.51
50	2	26.43	4.06
100	1	30.31	4.74
200	0.5	34.66	5.50
200 +CC	0.5	43.07	6.85

⁷ Envirocentre. December 2005. Insch Drainage Study. Report No. 1948.

⁸ No details were provided within the report as to the technique used for the catchment characteristic approach

3 Flood Estimation: The Shevock and Overall Approach

3.1 Peak flows: overall approach

Important inputs into a flood study are the analysis of historic floods (where data are available), and estimation of flood flows for a range of annual probabilities or 'design' events. Flood estimates for catchments of this size and type are undertaken using the Flood Estimation Handbook (FEH). The FEH offers three methods for analysing design flood flows: the Statistical, the Rainfall Runoff, and hybrid methods. The Statistical method combines estimation of the median annual maximum flood (QMED) at the subject site with a growth curve, derived from one of three methods; (a) a pooling group of gauged catchments that are considered hydrologically similar to the subject site, (b) through single site analysis of a nearby gauge, or (c) a combination of the two through the use of enhanced single site. The Rainfall Runoff method has recently been updated as ReFH2⁹). Hybrid methods involve a combination of the two. Both the Statistical and Rainfall Runoff procedures require the derivation of catchment descriptors. For this study these were initially abstracted digitally using the FEH CD ROM v3 for the Shevock and FEH Webservice for the tributaries in order to obtain FEH13 rainfall.

Adjustments were then made to the catchment area (using OS background mapping) and URBEXT (using the national growth model through the year of study, 2018, per FEH Volume 5). The FEH CD-ROM BFIHOST values appeared reasonable in comparison to the available geological information.

The Statistical Pooling method was selected as the most appropriate choice of peak flow estimation for The Shevock. This was because of the relatively large (40 km²) rural nature of the catchment and acceptable homogeneity of the pooling group. For the smaller tributary catchments, comparisons were made between the Statistical method and different Rainfall Runoff methods. Following this comparison, and hydrological analysis of a nearby hydrologically similar catchment at Mill of Keithfield, it was assumed that the most appropriate approach for the Valentines, Newton of Rothney and Mill of Rothney Burns was to use the Rainfall Runoff method. A 24% climate change allowance upon the 3.33% AP (30 year) and 0.5% AP (200 year) event was applied, as per SEPA guidance for Local Authority studies for the Aberdeenshire region¹⁰.

In addition to peak flow estimates, the hydraulic model also required the following information:

- Fluvial hydrographs for the model upstream limit on The Shevock, and also the Valentines Burn, Mill of Rothney Burn and Newton of Rothney Burns.
- Appropriate storm duration(s) for flood mapping.

These items are discussed in the following sections.

⁹ Wallingford Hydro Solutions (WHS) The Revitalised Flood Hydrograph, ReFH2: Technical Guidance, 2015 10 SEPA Flood Modelling Guidance for Responsible Authorities, Version 1.0.

3.2 The Shevock Flood Estimation

3.2.1 Peak flow estimation

The Shevock is rural and of moderate size (circa 40 km² at its confluence with the Urie). The Statistical method was therefore anticipated to be the most appropriate approach for peak flow estimation (Table 3-2). Peak flow estimates were required at:

- Just upstream of the confluence with the Urie (for comparison with model outputs; this is also the model downstream extent).
- Downstream of the Newton of Rothney Burn (for comparison with model outputs and providing an indication of lateral flow amounts).
- The model upstream extent (for direct input to the model).
- Upstream of the Mill of Rothney Burn (for comparison with model outputs and providing an indication of lateral flow amounts).

These estimates are described as follows.

3.2.1.1 Model upstream extent and upstream of the Mill of Rothney

Peak flow estimates for The Shevock were required upstream of the Mill of Rothney tributary (west of Insch) and at the upstream model boundary. A pooling group of catchments deemed hydrologically similar to the catchment of interest upstream of Mill of Rothney was derived within WINFAP. Adjustments were made to the default pooling group to remove sites that were discordant or hydrologically dissimilar (e.g. those with a very high BFIHOST), or add sites until a suitable pooling group size was achieved. WINFAP indicated the final pooling group to have an acceptably homogenous fit and both the General Extreme Value (GEV) and the General Logistic (GL) distributions were considered for use for the growth curve. The Z statistic approach available within WINFAP indicated both the GL and GEV distributions were acceptable, with the GL distribution giving a marginally better fit (0.959 compared to -0.966 respectively).

The Deveron at Avochie gauging station (9001), Bogie at Redcraig (9004) and Urie at Pitcaple (11004) were considered as possible QMED donors. The Urie at Pitcaple is the nearest gauge to the site of interest and is also closest in terms of catchment descriptors (Table 1-2). However, there are few high flow gaugings at Pitcaple and the value of QMED is sensitive to the choice of rating. For example, application of the new rating developed by JBA in December 2017¹¹ yields a QMED value of 31.15 m³/s (this rating has yet to be confirmed with SEPA) and application of the existing SEPA rating yields a QMED value of 28.93 m³/s. Use of Pitcaple would also have resulted in a QMED adjustment factor for the Shevock of less than one which may or may not be correct. Pitcaple was therefore not selected as a donor for The Shevock.

With respect to the alternative donors, the Bogie at Redcraig suffers from possible bypassing¹² and was therefore also deemed unsuitable. The Deveron at Avochie has a long period of record (59 years) and a well fitted rating that was recently updated. The catchment is immediately adjacent to the Urie catchment and similarly to Pitcaple recorded the highest flows on record during the 2009 and 2002 events. The catchment has a fairly similar geology and soil type and a review of the catchment descriptors deemed it suitable for use as the QMED donor, with the exception of area which is considerably greater (442 km²). Therefore, the Deveron at Avochie was selected as the final QMED donor and resulted in an adjusted QMED of 6.30 m³/s for The Shevock upstream of the Mill of Rothney. The 0.5% AP (200 year) flow was estimated to be 19.28 m³/s.

For consistency, peak flow estimates for the upstream model boundary were derived using the same growth curve, distribution and QMED donor. This gives a QMED of 5.80 m³/s and 0.5% AP (200 year) flow of 17.71 m³/s at the model upstream boundary. Estimates are provided in Table 3-1 and the growth curves in Figure 3-1. Peak flow estimates at the upstream model boundary were also calculated using the FEH Rainfall Runoff method for comparative purposes only and are given in Table 3-1.

^{11 2017}s6610. River Don Flood Map: Pitcaple Gauging Station Rating Review. Final Report v2.0. December 2017. 12 NRFA. 9004. Bogie at Redcraig. Accessed April 2018.

3.2.1.2 Upstream of the Urie confluence and downstream of the Newton of Rothney Burn

Peak flow estimates for the Shevock were also required at the model downstream boundary (Shevock/ Urie confluence) and downstream of the Newton of Rothney Burn. A different pooling group to that upstream of Mill of Rothney was derived within WINFAP and similarly adjusted to remove discordant sites. The final pooling group was deemed acceptably homogenous. The Z statistic approach available within WINFAP indicated that the GEV distribution had the best goodness of fit compared to the GL (0.750 compared to 3.3453) and the GEV was adopted for the growth curve (Figure 3-2). The Deveron at Avochie was selected as the QMED donor for the reasons stated above and resulted in an adjusted QMED of 9.04 m³/s for the Shevock at the Urie confluence and a 0.5% AP (200 year) flow of 24.42 m³/s. Peak flow estimates at the downstream model boundary were also calculated using the FEH Rainfall Runoff method for comparative purposes only and are given in Table 3-2.

Peak flow estimates were also calculated downstream of the Newton of Rothney tributary, at the eastern extent of Insch for the purpose of checking flows downstream of the Insch laterals during the hydraulic modelling exercise. For consistency, these estimates were derived using the same growth curve, distribution and QMED donor as at the downstream point of the Shevock (above). These estimates are provided in Table 3-3. Peak flow estimates at the Urie confluence will be used as a final downstream model boundary check with comparisons made between both the GL and GEV estimates.

3.2.1.3 Summary of flow estimate locations and approaches

To summarise, peak flow estimates were derived for the following locations as follows:

- 1. The Shevock upstream of the Mill of Rothney Burn derived using the Statistical pooling method but with a different pooling group to the downstream locations, and a GL distribution with the Deveron at Avochie as QMED donor.
- 2. The upstream model boundary derived using the same growth curve, distribution and donor as the Shevock at Mill of Rothney.
- 3. The Shevock at the River Urie confluence using the Statistical pooling method with GEV distribution and the Deveron at Avochie as QMED donor
- 4. The Shevock downstream of the Newton of Rothney Burn using the same growth curve, distribution and QMED donor as the downstream point of the Shevock.

Table 3-1: Peak flow estimates on The Shevock upstream of the Mill of Rothney and upstream
model boundary with adjusted area and default storm duration

Annual probability [AP] (%)	Return Period (years)	Upstream of Mill of Rothney Statistical Pooling GEV flow (m ³ /s)	Upstream of Mill of Rothney Statistical Pooling GL flow (m ³ /s)	Upstream model boundary Statistical Pooling GL flow (m ³ /s)	Upstream model boundary FEH Rainfall Runoff flow (m ³ /s)
50	2	6.31	6.31	5.80	8.26
20	5	8.76	8.53	7.84	11.5
10	10	10.44	10.14	9.32	13.48
4	25	12.63	12.46	11.45	17.18
3.33	30	13.07	12.96	11.91	17.96
2	50	14.31	14.45	13.28	20.31
1.33	75	15.32	15.74	14.46	21.94
1	100	16.03	16.71	15.35	23.32
0.5	200	17.79	19.28	17.71	26.91
0.2	500	20.19	23.24	21.35	32.52
0.1	1000	22.06	26.75	24.57	38.41
3.33 +cc	30 +cc	16.21	16.07	14.77	22.27
0.5+ cc	200 +cc	22.06	23.90	21.96	33.37

JBA

Annual probability [AP] (%)	Return Period (years)	Statistical Pooling GL flow (m³/s)	Statistical Pooling GEV flow (m³/s)	FEH Rainfall Runoff flow (m³/s)
50	2	9.04	9.04	11.70
20	5	12.39	12.76	16.12
10	10	14.71	15.15	19.53
4	25	17.92	18.12	24.53
3.33	30	18.60	18.69	25.61
2	50	20.58	20.27	28.88
1.33	75	22.26	21.50	31.15
1	100	23.51	22.36	33.06
0.5	200	26.74	24.42	38.05
0.2	500	31.55	27.07	45.81
0.1	1000	35.66	29.03	54.02
3.33 +cc	30 +cc	23.06	23.17	31.76
0.5 +cc	200 +cc	33.15	30.28	47.18

Table 3-2: The Shevock at the River Urie confluence (with adjusted area and default storm duration) peak flow estimates

Table 3-3: Peak flow estimates on The Shevock downstream of Newton of Rothney with adjusted area

Annual probability [AP] (%)	Return Period (years)	Statistical Pooling GEV flow (m ³ /s)
50	2	8.30
20	5	11.71
10	10	13.91
4	25	16.63
3.33	30	17.15
2	50	18.60
1.33	75	19.73
1	100	20.53
0.5	200	22.41
0.2	500	24.84
0.1	1000	26.64
3.33 +cc	30 +cc	21.27
0.5 +cc	200 +cc	27.79

Figure 3-1: The Shevock upstream of the Mill of Rothney growth curves

Figure 3-2: The Shevock at the Urie confluence growth curves

4 Flood Estimation: Valentines, Mill of Rothney and Newton of Rothney Burns

4.1 Peak flows: overall approach

The three tributaries at Insch are ungauged and have small catchment areas. A Rainfall Runoff type approach was therefore explored for flood estimation for those catchments, with checks also made using the FEH Statistical method. There are currently two main alternative rainfall runoff approaches which are accepted for use by SEPA in Scotland:

- FEH Rainfall Runoff (RR) method. This is the traditional method which uses FEH99 rainfall information. An assumption of the FEH Rainfall Runoff method is that, for floods with AP values of greater than 0.1% (i.e. more frequent than 1000 years), the AP value of the underlying rainfall event is smaller than that of the flow event. For example, the 0.5% AP (200 year) event is estimated to be generated from a rainstorm with an AP value of 0.41% (247 years). An Areal Reduction Factor (ARF) is used to apply the point storm depth across the catchment and losses (used to calculate net rainfall) are calculated from Standard Percentage Runoff (SPR) and the Catchment Wetness Index (CWI).
- 2. ReFH2. This is the Revitalised Rainfall Runoff method, calibrated for Scotland and using FEH13 rainfall. FEH13 refers to an updated approach to the design rainfall calculation which is based on a more extensive rain gauge network than was available for FEH99 and should therefore be more accurate (ReFH2 can also optionally be run with FEH99 rainfall). In general, for Scotland, FEH13 often generates higher rainfall amounts for short duration storms than FEH99. An assumption of ReFH2 is that the AP value of the underlying rainfall event is equal to that of the flow event. For example, the 0.5% AP (200 year) event is estimated to be generated from a rainstorm with an AP value of 0.5% (200 years). ReFH2 uses both the ARF and also a Seasonal Correction Factor (SCF) to apply seasonally dependant rainfall across the catchment. Losses are calculated using a more formal representation of soil storage than that used in the FEH Rainfall Runoff method.

While both methods were considered for each site, following basic LAG analysis using available hydrometric data in the area (the Keithfield Burn at Mill of Keithfield and Rothienorman TBR), along with statistical pooling analysis, the RR methodology was selected as the most appropriate choice of peak flow.

4.1.1 Basic LAG analysis at Mill of Keithfield and Old Rayne

A search for suitable donor sites for use in storm duration analysis and possible adjustment of rainfall runoff parameters, as well as informing the choice of peak flow estimate method was undertaken. The nearest gauge to the sites of interest was Old Rayne, a level only gauge approximately 350 m downstream of the Shevock-Urie confluence. Basic LAG analysis at Old Rayne using the Old Mill of Newton raingauge (located approximately 2.5 km upstream of Old Rayne) was inconclusive due to issues with raingauge representivity. For example, the Old Mill of Newton raingauge is located low in the catchment at Old Rayne, far from the headwaters and may therefore not be wholly representative of upper catchment rainfall which can be an important indicator of flood response. In addition, the catchment area at Old Rayne is approximately 115 km², considerably larger than the tributary watercourses whose areas are < 3.5 km². It was therefore concluded that Old Rayne was not wholly suitable as a guide to small catchment response and an alternative, the Keithfield Burn at Mill of Keithfield, was considered.

The Keithfield Burn has a level only gauging station at Mill of Keithfield. This donor site is located approximately 17 km southwest of Insch and has a relatively steep catchment which drains east towards the River Ythan and has a catchment area of approximately 18 km². The geology of the area comprises metamorphic bedrock overlain with superficial glacial deposits. Land use is predominantly arable and pasture with some forest habitats. This catchment was therefore selected over Old Rayne because of its size, similarity (Table 1-3) and geographical closeness to the subject sites and for which both rainfall and stage data is available. The TBR at Rothienorman was selected as the source of a 15 min rainfall data. This rain gauge is located circa 9 km northwest of the Keithfield Burn catchment, but it is the neatest TBR to the upper catchment and was therefore used out of necessity (the nearest rain gauges were at Meldrum house and Haddow House, were located further downstream in the catchment away from the Keithfield Burn headwaters and are therefore likely to be less representative of rainfall in the upper catchment which is usually very important in

contributing to flood response; also note that Met Office rain gauge and radar data at the required 15 min interval were not available).

Observed hydrograph information from the Mill of Keithfield gauge was considered together with rainfall data from the Rothienorman TBR in order to provide an estimate of lag time (LAG) and therefore back calculate storm duration. Combined analysis of the top 8 events yielded a geometric mean LAG value of 5.85 h with a range of 2.7 h for the December 2012 event to 8.6 h for the December 2010 event. Back calculation from this LAG value yielded a Tp of 4.72 and a storm duration of 8.64 h. A similar storm duration was estimated at Mill of Keithfield using the FEH Rainfall Runoff method with catchment descriptors (Tp of 4.33 h and storm duration of 8.25 h). The ReFH2 methodology in contrast has a significantly different Tp and storm duration (Table 4-1). As the Keithfield Burn is similar in characteristics to the burns draining to the Shevock, it was assumed that the FEH Rainfall Runoff method would not need modification (with respect to Tp) if it was adopted for peak flow estimation. ReFH2 was less consistent with the observed analysis.

Table 4-1: Storm	duration com	parison at Mill	of Keithfield
------------------	--------------	-----------------	---------------

	Mill of Keithfield observed data	RR	ReFH2
Geomean LAG	5.85		
Тр	4.72	4.33	3.51
Duration (h)	8.64	8.25	6.50

4.1.2 Peak flow estimates for the Valentines, Mill of Rothney and Newton of Rothney Burns

A comparison of the methods used (statistical and rainfall runoff variants) are provided in the following tables.

In all cases, the following conclusions were made:

- The FEH Rainfall Runoff method gave the highest flow estimates for all the tributaries. For example, for Valentines Burn the 0.5% AP (200 year) event is estimated to be 3.42 m³/s using the Statistical pooling method and 4.59 m³/s using the RR method.
- The Rainfall Runoff approach gave the highest estimates, with the FEH Statistical giving similar results and then ReFH2. For example, for the Mill of Rothney Burn the RR method gave a 0.5% AP (200 year) flow of 4.62 m³/s, Statistical pooling method 3.45 m³/s and ReFH2 2.58 m³/s.

Due to the catchment size of the tributaries a Rainfall Runoff approach is preferred, and based on the storm duration analysis at the nearby Mill of Keithfield, the Rainfall Runoff method was deemed more appropriate in this instance on The Shevock tributaries. The FEH RR method was therefore adopted for peak flow estimation for the Burns.

Annual probability [AP] (%)	Return Period (years)	FEH Rainfall Runoff flow (m³/s)	ReFH2 with FEH13 rainfall flow (m ³ /s)	Statistical Pooling GL flow (m ³ /c)	Statistical Pooling GEV flow
			(,0)	(117/5)	(111-75)
50	2	1.38	0.78	0.96	0.96
20	5	1.95	1.04	1.31	1.35
10	10	2.31	1.25	1.59	1.64
4	25	2.82	1.56	2.02	2.06
3.33	30	2.96	1.63	2.11	2.15
2	50	3.40	1.84	2.40	2.41
1.33	75	3.70	2.02	2.66	2.63
1	100	3.94	2.15	2.87	2.79
0.5	200	4.59	2.52	3.42	3.22
0.2	500	5.61	3.05	4.32	3.84
0.1	1000	6.67	3.48	5.16	4.37
3.33 +cc	30+cc	3.67	2.02	2.62	2.66
0.5+ cc	200+cc	5.69	3.12	4.24	3.99
Critical storm duration (hrs)		4.25	4.50		

Table 4-2: Valentines Burn with adjusted area and default storm duration peak flow comparison

Table 4-3: Mill of Rothney with adjusted area and default storm duration peak flow comparison

Annual probability [AP] (%)	Return Period (years)	FEH Rainfall Runoff flow (m³/s)	ReFH2 with FEH13 rainfall flow (m ³ /s)	Statistical Pooling flow GL (m ³ /s)	Statistical Pooling flow GEV (m³/s)
50	2	1.39	0.77	0.95	0.95
20	5	1.96	1.05	1.31	1.35
10	10	2.31	1.27	1.60	1.65
4	25	2.86	1.59	2.03	2.08
3.33	30	3.01	1.66	2.13	2.17
2	50	3.43	1.87	2.43	2.43
1.33	75	3.72	2.06	2.69	2.65
1	100	3.97	2.21	2.89	2.82
0.5	200	4.62	2.58	3.45	3.24
0.2	500	5.63	3.15	4.35	3.87
0.1	1000	6.70	3.61	5.19	4.39
3.33 +cc	30+cc	3.73	2.06	2.64	2.69
0.5+ cc	200+cc	5.73	3.20	4.28	4.02
Critical storm duration (hrs)		4.75	3.50		

Table 4-4: Newton of Rothney with adjusted area and default storm duration peak flow comparison

4.2 Fluvial hydrographs, storm durations and lateral inflows for modelling of the Shevock

The Shevock is ungauged therefore ReFH unit hydrographs within FloodModeller will be used in the absence of observed hydrographs. The storm duration at the downstream boundary of the model will be based on the default FEH RR duration of 9.25 h. Two storm durations were considered for modelling, these were: 9.25 h based on the Shevock critical storm duration, and 4.25 h based on Valentine and Newton of Rothney critical storm durations. Peak flows for these storm durations using the FEH RR approach are given in the tables below. It can be seen there is a minimal difference in peak flow estimates between the two durations, with the 9.25 h duration giving slightly higher estimates. For example, the 0.5 % AP (200 year) peak flow on the Valentines Burn was 4.60 m³/s using the 9.25 h storm duration and 4.59 m³/s using the default 4.25 h duration (Table 4-5). As there is only a small difference between the peak flows estimated using the two durations, only one duration (9.25 h) will be modelled. In addition, as the model will use ReFH units scaled to various estimates (e.g. to the statistical estimate for the model upstream extent for the Shevock and the FEH Rainfall Runoff estimates for the various burns) and not FEH Rainfall Runoff units throughout, the single 9.25 h duration will be retained and no additional adjustments (e.g. optimisation within Flood Modeller) are proposed.

Additional lateral inflows to the Shevock will be modelled using ReFH unit hydrographs within Flood Modeller Pro scaled to the RR estimates for the design runs. Catchment areas within the ReFH units will be increased to account for any additional inflows or unaccounted area between major laterals. Where no suitable tributary is present a distributed lateral inflow will be used. Final determination of this will be made at the point of modelling.

A combined single model will be run for the various return periods for example, the 0.5% AP (200 year) return period event for both the Shevock and tributaries will be modelled simultaneously. The Statistical peak flow estimate at the Urie-Shevock confluence will be used to check flows at the downstream boundary with checks made against both the GL and GEV distribution estimates.

The catchment is ungauged therefore no data is available for calibration of Manning's 'n'. However, where possible, approximate simulation of observed events will be undertaken by running the various ReFH units with observed rainfall. For example, observed rainfall from November 2002 from rain gauges such as Insch No.2, Cabrach or Rothienorman will be used to drive the model and the output checked against the SEPA supplied trash line for that event (in the vicinity of Willowbank Place).

Annual probability [AP] (%)	Return Period (years)	FEH Rainfall Runoff Storm duration 9.25 hours (m ³ /s)	FEH Rainfall Runoff Storm duration 4.25 hours (m ³ /s)	
50	2	1.37	1.38	
20	5	1.91	1.95	
10	10	2.32	2.31	
4	25	2.94	2.82	
3.33	30	3.07	2.96	
2	50	3.47	3.40	
1.33	75	3.75	3.70	
1	100	3.98	3.94	
0.5	200	4.60	4.59	
0.2	500	5.57	5.61	
0.1	1000	6.58	6.67	
3.33 +cc	30 +cc	3.81	3.67	
0.5 +cc	200 +cc	5.70	5.69	

Table 4-5: RR peak flow estimates for the Valentines Burn for the two storm durations

Annual probability [AP] (%)	Return Period (years)	FEH Rainfall Runoff Storm duration 9.25 hours (m ³ /s)	FEH Rainfall Runoff Storm duration 4.25 hours (m ³ /s)	
50	2	1.19	1.19	
20	5	1.66	1.68	
10	10	2.02	2.00	
4	25	2.56	2.43	
3.33	30	2.68	2.56	
2	50	3.03	2.95	
1.33	75	3.27	3.20	
1	100	3.48	3.41	
0.5	200	4.02	3.97	
0.2	500	4.86	4.86	
0.1	1000	5.75	5.79	
3.33 +cc	30 +cc	3.32	3.17	
0.5 +cc	200 +cc	4.98	4.92	

Table 4-6: RR peak flow estimates for the Newton of Rothney Burn for the two storm durations

Table 4-7: RR peak flow estimates for the Mill of Rothney Burn for the two storm durations

Annual probability [AP] (%)	Return Period (years)	FEH Rainfall Runoff Storm duration 9.25 hours (m ³ /s)	FEH Rainfall Runoff Storm duration 4.25 hours (m ³ /s)
50	2	1.40	1.37
20	5	1.94	1.92
10	10	2.37	2.27
4	25	3.00	2.77
3.33	30	3.14	2.92
2	50	3.55	3.35
1.33	75	3.83	3.64
1	100	4.07	3.89
0.5	200	4.70	4.53
0.2	500	5.69	5.52
0.1	1000	6.73	6.58
3.33 +cc	30 +cc	3.89	3.62
0.5 +cc	200 +cc	5.83	5.62

5 Comparison with Previous Studies

The 2005 EnviroCentre study⁷ compared peak flow estimates from a Statistical pooling and catchment characteristic approach for The Shevock and Valentines Burn. Those estimates, together with the peak flow estimates to be used in this study are listed in the tables below. In summary, the differences are as follows:

- The peak flows calculated using the Statistical pooling method are broadly similar between the 2005 EnviroCentre and 2018 JBA reports. For example, The Shevock 0.5 % AP (200 year) peak flow was estimated to be 29.01 m³/s in 2005 and 22.41 m³/s in 2018.
- The 2005 Envirocentre pooling method used a GL distribution while the present study uses a GEV distribution.
- The catchment characteristic and Rainfall Runoff methods gave the largest peak flow estimates. For example, the 0.5 % AP (200 year) peak flow on The Shevock was estimated to be 34.66 m³/s in 2005 and 38.05 m³/s in 2018 (Table 3-2).
- For the Valentines Burn the catchment descriptor methods obtained relatively similar results with 0.5 % AP (200 year) peak flow estimated to be 5.50 m³/s in 2005 and 4.59 m³/s in 2018. 2018 estimated peak flows were less than this using the ReFH2 and Statistical pooling methods. This also supports the use of the FEH RR method for The Shevock tributaries.

It should be noted there is a difference in study area between the 2005 and present study for The Shevock. The 2005 catchment area was to the confluence with the Valentines Burn covering an area of 32 km², compared to a catchment area of 40 km² at the Shevock-Urie confluence used in this study. Results above and in Table 5-1 have been quoted for The Shevock downstream of Newton of Rothney as the catchment area (35.65 km²) is of greater similarity. Furthermore, 11 years of additional HiFlows-UK data with revised ratings and greater number of stations suitable for pooling, were available for the present study. Both of these factors will contribute to the difference in peak flow estimates between reports.

Return Period (years)	Annual Probability [AP]	2005 EnviroCentre study The Shevock using catchment descriptors (m ³ /s)	2005 EnviroCentre study The Shevock Statistical pooling (homogenous pooing group) (m ³ /s)	2018 JBA study The Shevock downstream of Newton of Rothney Statistical pooling GEV (m ³ /s)
2	50	10.81	6.69	8.30
5	20	14.95	9.96	11.71
10	10	17.70	12.49	13.91
25	4	22.68	16.36	16.63
50	2	26.43	19.88	18.60
100	1	30.31	24.04	20.53
200	0.5	34.66	29.01	22.41
200 +CC	0.5	43.07	37.09	27.79

Table 5-1: The Shevock EnviroCentre 2005 and JBA 2018 peak flow comparison

JBA

Return Period (years)	Annual Probability [AP] (T)	2005 EnviroCentre study Valentines Burn using catchment descriptors (m ³ /s)	2005 EnviroCentre study Valentines Burn Statistical pooling (homogenous P group) (m ³ /s)	2018 JBA study Valentines Burn Rainfall Runoff method (m³/s)
2	50	1.68	0.72	1.38
5	20	2.39	1.02	1.95
10	10	2.83	1.26	2.31
25	4	3.51	1.61	2.82
50	2	4.06	1.93	3.40
100	1	4.74	2.30	3.94
200	0.5	5.50	2.75	4.59
200 +CC	0.5	6.85	3.47	5.69

Table 5-2: Valentine Burn EnviroCentre 2005 and JBA 2018 peak flow comparison

6 Conclusions

The Shevock has a history of flooding dating back to at least 1864/5 with the main risk area at Insch. In addition to direct flood risk from the fluvial Shevock, flood risk at Insch is complicated by the influence of three small watercourses (the Valentines, Mill of Rothney and Newton of Rothney Burns). Hydrology estimates were required as input to a linked 1D/2D hydraulic model of the Shevock for use in flood mapping. Those estimates included the following:

- Peak flow estimates on the:
 - The Shevock at the upstream boundary of the model. FEH Statistical and Rainfall Runoff methods were investigated for peak flow estimation. The FEH Statistical pooling approach has been adopted with a GL distribution and the Deveron at Avochie (9001) used to adjust QMED. Peak flows at this location will be input directly to the model. The 0.5 % Annual Probability (AP, 200 year flood) event was estimated to be circa 17.71 m³/s.
 - The Shevock at the River Urie confluence. FEH Statistical and Rainfall Runoff methods were investigated for peak flow estimation and the adopted method was the Statistical pooling approach with a GEV distribution and the Deveron at Avochie (9001) used to adjust QMED. The 0.5% AP (200 year flood) was estimated to be circa 24.42 m³/s. This peak flow estimate will be used as a check at the downstream boundary of the model.
 - Valentines Burn, Mill of Rothney Burn and Newton of Rothney Burn at their confluence with The Shevock. A variety of methods were investigated for peak flow estimation, and the adopted method in each case was the FEH Rainfall Runoff method. The 0.5% AP (200 year flood) was estimated to be 4.60 m³/s, 4.70 m³/s and 4.02 m³/s for the Valentine, Mill of Rothney and Newton of Rothney Burns respectively for their given critical storm duration.
- Fluvial hydrographs and critical storm durations. All watercourses are ungauged therefore hydrograph inputs into the hydraulic model will be represented by ReFH units scaled to the appropriate design flow. The critical storm duration for the Shevock based on the FEH Rainfall Runoff method is 9.25 h. The tributary watercourses have very different catchment areas and two storm durations were initially considered for modelling: one long (9.25 h, based on the Shevock) and one short (4.25 h, based on the Valentines and Newton of Rothney Burns). However, peak flows estimated using both durations were very similar and only the 9.25 h duration (which yields slightly higher peak flows) will be taken forward to the modelling.

Table 6-1: Summary of design peak flows

Annual Probability [AP] (%)	Return Period (years)	The Shevock at the upstream model boundary Statistical Pooling Method GL flow (m ³ /s)	The Shevock at the River Urie confluence Statistical Pooling Method GEV flow (m³/s)	Valentines Burn FEH Rainfall Runoff flow Storm duration 9.25 hours (m³/s)	Mill of Rothney FEH Rainfall Runoff flow Storm duration 9.25 hours (m³/s)	Newton of Rothney FEH Rainfall Runoff flow Storm duration 9.25 hours (m³/s)
50	2	5.80	9.04	1.37	1.40	1.19
20	5	7.84	12.76	1.91	1.94	1.66
10	10	9.32	15.15	2.32	2.37	2.02
4	25	11.45	18.12	2.94	3.00	2.56
3.33	30	11.91	18.69	3.07	3.14	2.68
2	50	13.28	20.27	3.47	3.55	3.03
1.33	75	14.46	21.50	3.75	3.83	3.27
1	100	15.35	22.36	3.98	4.07	3.48
0.5	200	17.71	24.42	4.60	4.70	4.02
0.2	500	21.35	27.07	5.57	5.69	4.86
0.1	1000	24.57	29.03	6.58	6.73	5.75
3.33 +CC	30 +CC	14.77	23.17	3.81	3.89	3.32
0.5 +CC	200 +CC	21.96	30.28	5.70	5.83	4.98
0.5 specific discharge	200	0.83	0.61	1.45	1.38	1.46
Critical duration for modelling (h)		9.25	9.25	9.25	9.25	9.25

Appendices

A Statistical Method- Additional Outputs

This section provides further information on the statistical method.

A.1 The Shevock at Urie confluence

FEH STATISTICAL FLOOD ESTIMATION SUMMARY SHEET									
Site	Shevock Burn @ Urie conlfuence								
NGR	NJ 669 286								
Type of	Peak flows for model								
problem/objective of									
Type of catchment	Rural	lural							
QMED site cd	8.3	mº/s							
	Depart Apologue	Sites Considered							
Site name		Bogie@Redcraig							
	0001								
Station number	9001 NI 52222 46969	9004 NU 50297 27161							
NGN Provimity (km)	15 00	11 52							
Adjustment	1 0851	0.93							
Site Chosen	Y	N							
QMED site adjusted by									
data transfer (m ³ /s)	9.0	Specific Q (l/s/ha)	2.2						
Q ₁₀₀ growth curve factor	2.47								
$Q_{100} (m^3/s)$	22.4	Q100/ area (l/s/ha)	5.6						
	Summa	iry Data							
FEH catchment area	39	39.53 km ²							
Adjusted catchment area	40.25 km ²								
URBEXT 1990	0.007								
URBEXT 2010	0.008								
URBEXT Adjustment	Lirbe	xt2000							
Method		x12000							
SAAR	EEU Otatia	368 His al Mathaad							
Method Used	FEH Statis	stical Method							
Variation from Chosen									
Method									
Index Used	BFI	HUST	3,						
QMED -	9	.04	m°/s						
5	12	2.70	m°/s						
10	10	0.10	m ^o /s						
30	18	0.09	m ^o /s						
50	20).27	m ³ /s						
75	21	1.50	m ³ /s						
100	22	2.36	m³/s						
200	24	1.42	m³/s						
1000	20 Eastern	9.03 Sectland	m³/s						
Climate Change Region	Eastern	Scolland							
adjustment	24	.0%							
		0.3	m ³ /s						
Donor/ Analogues Used			iii / J						
Calcs by:	Briony McIntosh	Date:	19/03/2018						
Chacked by:	David Comoron	Data:	00/00/0010						
	David Cameron Date: 23/03/2018								

		POOLING GRO	UP DETAILS										
Original Default Pooling Group							Default Pooling Group Catchment Descr	intors					
Station name	Distance	e Years of data	QMED AM	L-CV	L-SKEW	Discordancy	Station	Distance SDM	AREA	SAAR	FPEXT	FARL	URBEXT 2000
28058 (Henmore Brook @ Ashbourne)	0.205	12	9.006	0.155	-0.064	1.825	28058 (Henmore Brook @ Ashbourne)	0.205	38.52	895	0.030	0.977	0.021
53017 (Boyd @ Bitton)	0.31	43	13.820	0.247	0.106	0.202	53017 (Bovd @ Bitton)	0.310	47.58	807	0.050	0.998	0.016
44011 (Asker @ East Bridge Bridport)	0.365	21	16.800	0.239	0.112	0.281	44011 (Asker @ East Bridge Bridport)	0.365	48.52	924	0.025	0.994	0.015
44003 (Asker @ Bridport)	0.365	14	12.354	0.224	0.17	1.202	44003 (Asker @ Bridport)	0.365	48.52	924	0.025	0.994	0.015
24007 (Browney @ Lanchester)	0.382	15	10.981	0.222	0.212	2.235	24007 (Browney @ Lanchester)	0.382	44.67	797	0.015	1.000	0.001
43806 (Wylve @ Brixton Deverill)	0.394	25	2.080	0.376	0.211	0.97	43806 (Wylve @ Brixton Deverill)	0.394	50.04	968	0.037	1.000	0.003
49004 (Gannel @ Gwills)	0.403	47	15.022	0.258	0.105	0.264	49004 (Gannel @ Gwills)	0.403	40.83	1046	0.025	0.999	0.007
41020 (Bevern Stream @ Clappers Bridge)	0.414	47	13.900	0.205	0.17	0.43	41020 (Bevern Stream @ Clappers Bridg	0.414	35.48	886	0.076	0.993	0.013
39033 (Winterbourne Stream @ Bagnor)	0.425	54	0.404	0.344	0.386	1.843	39033 (Winterbourne Stream @ Bagnor)	0.425	45.31	717	0.033	1.000	0.001
28041 (Hamps @ Waterhouses)	0.447	31	26.664	0.220	0.295	1.375	28041 (Hamps @ Waterhouses)	0.447	37.04	1085	0.033	1.000	0.004
44013 (Piddle @ Little Puddle)	0.452	23	1.103	0.463	0.254	2.367	44013 (Piddle @ Little Puddle)	0.452	34.09	1002	0.016	1.000	0.004
42011 (Hamble @ Frogmill)	0.477	44	8.282	0.167	0.073	1.005	42011 (Hamble @ Frogmill)	0.477	55.25	838	0.044	0.991	0.029
26803 (Water Forlornes @ Driffield)	0.535	17	0.437	0.300	0.112	0.459	26803 (Water Forlornes @ Driffield)	0.535	32.42	721	0.016	1.000	0.007
41022 (Lod @ Halfway Bridge)	0.548	46	16.260	0.288	0.181	0.201	41022 (Lod @ Halfway Bridge)	0.548	52.44	857	0.061	0.951	0.009
49002 (Hayle @ st Erth)	0.548	59	4.649	0.234	0.202	0.561	49002 (Hayle @ st Erth)	0.548	48.58	1076	0.027	0.977	0.008
24006 (Rookhope Burn @ Eastgate)	0.577	20	24.620	0.152	0.117	0.78	24006 (Rookhope Burn @ Eastgate)	0.577	36.60	1126	0.018	0.994	0.000
Total		518											
Weighted means				0.257	0.171								
Final Pooling Group							Final Pooling Group Catchment Descript	ors				-	
Station name	Distance	e Years of data	QMED AM	L-CV	L-SKEW	Discordancy	Station	Distance SDM	AREA	SAAR	FPEXT	FARL	URBEXT 2000
53017 (Boyd @ Bitton)	0.310	43.000	13.820	0.247	0.106	0.193	53017 (Boyd @ Bitton)	0.31	47.58	807	0.050	0.998	0.016
44011 (Asker @ East Bridge Bridport)	0.365	21.000	16.800	0.239	0.112	0.402	44011 (Asker @ East Bridge Bridport)	0.37	48.52	924	0.025	0.994	0.015
44003 (Asker @ Bridport)	0.365	14.000	12.354	0.224	0.170	1.133	44003 (Asker @ Bridport)	0.37	48.52	924	0.025	0.994	0.015
24007 (Browney@Lanchester)	0.382	15.000	10.981	0.222	0.212	1.281	24007 (Browney@Lanchester)	0.38	44.67	797	0.015	1.000	0.001
49004 (Gannel @ Gwills)	0.403	47.000	15.022	0.258	0.105	0.432	49004 (Gannel @ Gwills)	0.40	40.83	1046	0.025	0.999	0.007
41020 (Bevern Stream @ Clappers Bridge)	0.414	47.000	13.900	0.205	0.170	0.444	41020 (Bevern Stream @ Clappers Bridge	0.41	35.48	886	0.076	0.993	0.013
28041 (Hamps @ Waterhouses)	0.447	31.000	26.664	0.220	0.295	2.306	28041 (Hamps @ Waterhouses)	0.45	37.04	1085	0.033	1.000	0.004
41022 (Lod @ Halfway Bridge)	0.548	46.000	16.260	0.288	0.181	0.559	41022 (Lod @ Halfway Bridge)	0.55	52.44	857	0.061	0.951	0.009
49002 (Hayle @ st Erth)	0.548	59.000	4.649	0.234	0.202	0.327	49002 (Hayle @ st Erth)	0.55	48.58	1076	0.027	0.977	0.008
24006 (Rookhope Burn @ Eastgate)	0.577	20.000	24.620	0.152	0.117	1.225	24006 (Rookhope Burn @ Eastgate)	0.58	36.60	1126	0.018	0.994	0.000
20006 (Biel Water @ Belton House)	0.668	28.000	11.748	0.375	0.128	2.772	20006 (Biel Water @ Belton House)	0.67	57.55	742	0.019	0.981	0.001
51003 (Washford @ Beggearn Huish)	0.696	49.000	6.120	0.190	0.076	1.141	51003 (Washford @ Beggearn Huish)	0.70	36.70	1151	0.005	0.982	0.003
47009 (Tiddy @ Tideford)	0.767	47.000	6.466	0.212	0.230	0.824	47009 (Tiddy @ Tideford)	0.77	37.40	1276	0.024	1.000	0.011
30004 (Lymn @ Partney Mill)	0.779	54.000	6.983	0.231	0.046	0.962	30004 (Lymn @ Partney Mill)	0.78	60.09	686	0.060	0.979	0.006
												-	
Total		521.000											
Weighted means		988.000		0.236	0.152								

	DERIVING A POOLED GROWTH CURVE								
Site	Shevock Burn					Ungauged site			
NGR	NJ 66750 2860	0	Gauged site						
			Attached Printo	uts					
	WINFAP-FEH	station details							
	WINFAP-FEH s	summary infor	mation if gauged site						
	·		nitial Pooling Group) Details					
Name		p_sepa_She	vock_Urie_confluence	_default					
Site of interest Urie confluence									
Return perio	Return period of interest 2, 5, 10, 25, 30, 50, 75, 100, 200, 500, 1000, 200 +CC years								
Other inforn	nation								
Version of V	WIN-FAP FEH	Version 3.0							
Data Files		Other							
lf 'Other' ch	osen in Data								
Files enter	file path here	HiFlows v6.0	SEPA WY2016						
		diustment/ 0	Changes made to De	fault Pooling G	roup.				
	Also note site	es that were in	vestigated but retaine	d in the group (i.	e. for discordanc	V)			
				Addition/					
				Deletion/					
Statio	on number		Name	 Move/	Rea	son			
				Investigate					
4	44013	Piddle	e@LittlePuddle	D	BFIHOS	ST >0.85			
4	43806	Wylye	@BrixtonDeverill	D	BFIHOS	ST >0.85			
2	26803	WaterFo	orlornes@Driffield	D	BFIHOS	T >0.85			
4	42011	Ham	ble@Frogmill	D	URBEX	Г >0.025			
2	20006	BielWat	er@BeltonHouse	A	increase re	cord length			
Ę	51003	Washford	@BeggearnHuish	A	increase re	cord length			
4	47009	Tide	dy@Tideford	Α	increase re	cord length			
2	28058	Henmore	Brook@Ashbourne	D	L-mome	nt skew			
(30004	Lymr	@PartneyMill	Α	increase re	cord length			
					Moderatelyh	igh BFIHOST			
:	39033	Winterbou	rneSteam@Bangor	D	causing poor h	eterogenity and			
					steep gro	wth curve			
			Final Pooling Group	Details					
			Heterogeneity Me	asure					
	H1			Heterogeneous					
	H2		Acce	stably Homogene	eous				
			Goodness of F	it					
Acce	ptable Fit			Distribution					
			Ge	neralised Logisti	С				
			Gener	alised Extreme \	/alue				
				Pearson Type iii					
			G	eneralised Pareto	C				
		-	Growth Curve Fit	tings					
Attack	ad print auto		WINFAP-FEH growth	n curve fittings					
Allache	ed print outs		WINFAP-FEH growth	n curve					
Name of F	inal Pooling Gr	oup	p_se	pa_Shevock_Urie	e_confluence_adj				

A.2 The Shevock Upstream of the Mill of Rothney Burn

FEH STATISTICAL FLOOD ESTIMATION SUMMARY SHEET									
Site	Shevock Burn US Mill of Rothney								
NGR	NJ 625 277								
Type of	Peak flows for model								
problem/objective of									
-	Dural								
Type of catchment	Rurai								
QMED _{site cd}	5.8 III /S								
	Depor/ Apologuo	Sites Considered							
Site name	Deveron@Avochie Bogie@Rederaig Urie@Pitoaple								
Station number	9001	9004	11004						
NGR Drovimity (km)	10 05	INJ 52387 37 161	INJ 721 259						
Adjustment	1 0801	9.45	4						
Site Chosen	V	N	0.95 N						
		I V	IN IN						
QMED atta adjusted by									
data transfer (m^3/s)	5.8	Specific Q (l/s/ha)	2.3						
Q ₁₀₀ growth curve factor	2 65								
$O_{100} (m^{3}/c)$	16.7	Q100/ area (l/s/ha)	6.6						
Q ₁₀₀ (III / S)	10.7								
	Summa	rv Data							
FFH catchment area	24.59 km ²								
Adjusted catchment area									
LIRREXT 1990	0.001								
URBEXT 2010	0.000								
URBEXT Adjustment	1.1.4								
Method	editu	X12000							
SAAR	8	391							
Method Used	FEH Statis	stical Method							
Variation from Chosen									
Method									
Index Used	BFI	HOST							
QMED	6	.31	m ³ /s						
5	8	.53	m ³ /s						
10	1().14	m ³ /s						
30	12	2.96	m ³ /s						
50	14	1.45	m ³ /s						
75	15	5.74	m ³ /s						
100	16	5.71	m ³ /s						
200	19	9.28	m ³ /s						
1000	26	6.75	m ³ /s						
Climate Change Region	Eastern	Scotland							
Climate change	24	.0%							
adjustment		0.0	3,						
200 + cc	2	3.9	m³/s						
Donor/ Analogues Used		1							
Calcs by:	Briony McIntosh	Date:	16/03/2018						
Checked by:	David Cameron	Date:	21/03/2018						

		POOLING G	ROUP DETAILS	6											
Original Default Pooling Group							1	Default	Pooling Group Catchment Desc	riptors					
14000 (Cauth Winterbaume @ Winterbaum	0.405	07	0.449	0.410	0.000	1.000		4000 ((Cauth Winterhauma @ Winterha	0.40E	00.10	1010	0.015	1.000	0.004
44008 (South Winterbourne @ Winterbourne	0.405	37	0.448	0.416	0.326	1.036	2	4008 (South Winterbourne @ Winterbo	0.405	20.18	1012	0.015	1.000	0.004
22003 (Usway Burn @ Shiimoor)	0.45	13	16.170	0.282	0.311	1./85	2	2003 ((Usway Burn @ Snillmoor)	0.450	21.88	1056	0.006	1.000	0.000
27010 (Hodge Beck @ Bransdale Weir)	0.481	41	9.420	0.224	0.293	0.679	2	4010 ((Hodge Beck @ Bransdale Welr)	0.481	18.82	987	0.009	1.000	0.001
44013 (Fiddle @ Little Fuddle)	0.534	23	1.103	0.463	0.254	0.550		4013 ((Fiddle @ Little Fuddle)	0.534	34.09	1002	0.016	1.000	0.004
203046 (Rathmore Burn @ Rathmore Bridg	0.574	34	10.788	0.146	0.136	0.558	2	03046	(Rathmore Burn @ Rathmore Bi	10.574	22.50	1043	0.072	1.000	0.000
26803 (Water Fonomes @ Driffield)	0.582	17	0.437	0.300	0.112	0.466	2	6803 ((water Foriomes @ Driffield)	0.582	32.42	/21	0.016	1.000	0.007
28058 (Henmore Brook @ Ashbourne)	0.644	12	9.006	0.155	-0.064	1.673	2	8058 ((Henmore Brook @ Ashbourne)	0.644	38.52	895	0.030	0.977	0.021
49005 (Bollingey Stream @ Bolingey Cocks	0.674	6	6.511	0.265	0.063	1.331	2	9005 ((Bollingey Stream @ Bolingey Co	CI U.674	16.08	1044	0.023	0.991	0.006
28041 (Hamps @ Waternouses)	0.686	31	26.664	0.220	0.295	1.348	2	8041 ((Hamps @ waternouses)	0.686	37.04	1085	0.033	1.000	0.004
26802 (Gypsey Race @ Kirby Grindalythe)	0.688	1/	0.116	0.274	0.24	0.078	2	6802 (Gypsey Race @ Kirby Grindalythe	9)0.688	15.85	/5/	0.030	1.000	0.000
250 19 (Leven @ Easby)	0.706	38	5.333	0.338	0.391	1.076	2	5019 ((Leven @ Easby)	0.706	15.09	830	0.020	1.000	0.004
41020 (Bevern Stream @ Clappers Bridge)	0.726	4/	13.900	0.205	0.17	0.602	4	1020 (Bevern Stream @ Clappers Bridg	g€0.726	35.48	886	0.076	0.993	0.013
24006 (Rookhope Burn @ Eastgate)	0.728	20	24.620	0.152	0.117	0.586	2	4006 ((Rookhope Burn @ Eastgate)	0.728	36.60	1126	0.018	0.994	0.000
73015 (Keer @ High Keer Weir)	0.774	25	12.239	0.174	0.191	0.455	7	3015 ((Keer @ High Keer Weir)	0.774	30.04	1158	0.074	0.976	0.003
49004 (Gannel @ Gwills)	0.774	4/	15.022	0.258	0.105	0.345	4	9004 ((Gannel @ Gwills)	0.774	40.83	1046	0.025	0.999	0.007
51003 (Washford @ Beggearn Huish)	0.803	49	6.120	0.190	0.076	1.129		1003 ((Washford @ Beggearn Huish)	0.803	36.70	1151	0.005	0.982	0.003
36010 (Bumpstead Brook @ Broad Green)	0.827	49	7.585	0.365	0.173	2.002	3	6010 ((Bumpstead Brook @ Broad Gree	er 0.827	27.58	588	0.045	0.999	0.007
Total		506											-		
I Otal		506		0.004	0.400										
weighted means				0.264	0.198										
Final Pooling Group								inal Dr	oling Group Catchment Descrip	tore					
Station name	Distance	Years of data	QMED AM	L-CV	L-SKEW	Discordancy	•	Station	boing a cup outoninent becomp	Distance SDM	AREA	SAAR	FPEXT	FABL	UBBEXT 2000
22003 (Usway Burn @ Shillmoor)	0.450	13.000	16.170	0.282	0.311	1,144	2	2003 ((Usway Burn @ Shillmoor)	0.45	21.88	1056	0.006	1.000	0.000
27010 (Hodge Beck @ Bransdale Weir)	0.481	41,000	9.420	0.224	0.293	0 547		7010 ((Hodge Beck @ Bransdale Weir)	0.48	18.82	987	0.009	1 000	0.001
203046 (Bathmore Burn @ Bathmore Bridg	0.574	34,000	10.788	0.146	0.136	0.808		03046	(Bathmore Burn @ Bathmore Br	0.40 i/ 0.57	22.50	1043	0.003	1.000	0.001
29041 (Hamps @ Waterbourges)	0.574	21.000	26.664	0.140	0.100	1.572		00040	(Hamps @ Waterbourses)	0.60	27.04	1095	0.072	1.000	0.000
25041 (Hamps @ Waterhouses)	0.000	31.000	20.004	0.220	0.295	0.007	2	5010 ((Laure @ Fachul	0.03	15.00	000	0.033	1.000	0.004
250 19 (Leven @ Easby)	0.706	38.000	5.333	0.336	0.391	2.337	4	1000 ((Leven @ Easby)	0.71	15.09	030	0.020	0.000	0.004
4 1020 (Beveni Stream @ Ciappers Bridge)	0.720	47.000	13.900	0.205	0.170	0.266	-	1020 ((Bevern Stream @ Crappers Bridg	JEU.73	35.46	000	0.076	0.993	0.013
24006 (Rooknope Burn @ Eastgate)	0.728	20.000	24.620	0.152	0.117	0.694	2	4006 ((Rooknope Burn @ Eastgate)	0.73	36.60	1126	0.018	0.994	0.000
73015 (Keer @ High Keer weir)	0.774	25.000	12.239	0.174	0.191	0.402	1	3015 ((Keer @ High Keer weir)	0.77	30.04	1158	0.074	0.976	0.003
49004 (Gannel @ Gwills)	0.//4	47.000	15.022	0.258	0.105	1.865	4	9004 ((Gannel @ Gwills)	0.77	40.83	1046	0.025	0.999	0.007
51003 (Washford @ Beggearn Huish)	0.803	49.000	6.120	0.190	0.076	0.672	Ę	1003 ((Washford @ Beggearn Huish)	0.80	36.70	1151	0.005	0.982	0.003
72014 (Conder @ Galgate)	0.844	49.000	16.646	0.212	0.082	0.697	7	2014 ((Conder @ Galgate)	0.84	28.99	1183	0.082	0.975	0.006
47021 (Kensey @ Launceston Newport)	0.873	14.000	13.778	0.257	0.103	2.471	4	7021 ((Kensey @ Launceston Newport)	0.87	34.83	1298	0.022	0.998	0.017
24007 (Browney @ Lanchester)	0.878	15.000	10.981	0.222	0.212	0.690	2	4007 ((Browney@Lanchester)	0.88	44.67	797	0.015	1.000	0.001
47009 (Tiddy @ Tideford)	0.905	47.000	6.466	0.212	0.230	0.220	4	7009 ((Tiddy @ Tideford)	0.91	37.40	1276	0.024	1.000	0.011
72007 (Brock @ Upstream of a6)	0.917	38.000	29.438	0.195	0.231	0.611	7	2007 ((Brock @ Upstream of a6)	0.917	31.51	1361	0.053	1.000	0.000
Total		508													
Weighted means		978		0.219	0.196										

			DERIVING A POOLED GROWTH C	URVE							
Site	Shevock Burn U	JS Mill of Roth	iney		Ungauged site						
NGR	NJ 625 277					Gauged site					
			Attached Printouts								
	WINFAP-FEH s	tation details									
	WINFAP-FEH s	ummary inform	mation if gauged site								
			Initial Pooling Group Deta	ils							
Name		p_sepa_Shev	ock US MillofRothney_default								
Site of inter	est	US Mill of Rothney									
Return perio	od of interest	2, 5, 10, 25,	30, 50, 100, 200, 500, 1000, 200	+CC							
Other inform	nation										
Version of V	VIN-FAP FEH	Version 3.0									
Data Files		Other									
lf 'Other' cho	osen in Data										
Files enter t	file path here	HiFlows v6.0	SEPA WY2016								
		Adjustme	ent/ Changes made to Default	Pooling Group							
	Also not	e sites that w	ere investigated but retained in th	ne group (i.e. for	discordancy)						
				Addition/							
o				Deletion/							
Statio	n number		Name	 Move/	Reason						
				Investigate							
2	26802	Gypse	vRace@KirbyGrindalythe	BFIHO	ST >0.85						
2	26803	Wa	terForlornes@Driffield	BFIHO	ST >0.85						
4	4013	F	Piddle@LittlePuddle	BFIHO	ST >0.85						
	72014	-	Condor@Galgate	A	increase record length						
	17021	Kens	ev@LauncestonNewport	A	increase record length						
	4008	SouthWinterb	ourne@WinterbourneSteepleton	D	High BEIHOST (0.811)						
2	24007	В	rownev@Lanchester	A	increase record length						
	17009		Tiddy@Tidefrod	A	increase r	ecord length					
	19005	BolingevS	tream@BolingevCocksBridge	D	short red	cord length					
					Low SAAR (588	B) and PROPWET					
3	36010	Bumps	steadBrook@BroadGreen	D	(0.270) cor	npared to site					
			Final Pooling Group Deta	ils							
			Heterogeneity Measure	1							
	H1		Heter	ogeneous							
	H2		Acceptably	Homogeneous							
			Goodness of Fit								
Acce	ptable Fit		Dist	ribution							
			Generali	sed Logistic							
			Generalised	Extreme Value							
			Pearso	on Type iii							
			General	ised Pareto							
			Growth Curve Fittings								
A44 a - 1-			WINFAP-FEH growth curve fittin	gs							
Attache	ea print outs		WINFAP-FEH growth curve	-							
Name of Fi	inal Pooling Gro	oup	up p sepa Shevock US MillofRothney adj								

A.3 Valentines Burn at Shevock confluence

F	EH STATISTICAL FLOOD ES	TIMATION SUMMARY SHEE	Т								
Site	Valentines Burn@ Shevoc	ck confluence									
NGR	NJ 63491 28114										
lype of	Peak flows for model	00 000 000aa E00 1000									
problem/objective of	2, 5, 10, 25, 30, 50, 75, 10	00, 200, 200CC, 500, 1000									
Type of catchment	Rural	Rural									
QMED _{site cd}	0.89	0.89 m ³ /s									
	Donor/ Analogue	Sites Considered									
Site name	Urie@Pitcaple	Ythan@Ardlethen	Deveron@Avochie								
Station number	11004	9001									
NGR											
Proximity (km)	0.32	21.46	18								
Adjustment	0.954	1.01	1.08								
Site Chosen	N	Y	N								
	1.0	Specific O (l/o/ba)	2.0								
QMED site adjusted by	1.0	Specific & (i/s/fia)	3.0								
data transfer (m ^s /s)											
Q ₁₀₀ growth curve factor	2.99	9.0									
Q ₁₀₀ (m ³ /s)	2.9										
	Summa	ry Data									
FEH catchment area	3.23 km ²										
Adjusted catchment area	3.18 km ²										
URBEXT 1990	0.027										
URBEXT 2010	0.0	037									
URBEXT Adjustment	Urbe	xt2000									
	0	000									
SAAR Method Used	FFH Statis	itical Method									
Variation from Chosen											
methoa Indax Ucad	B	FI									
	1	00	m ³ /a								
	1.	21	m ³ /s								
2	1	50	m ³ /a								
10	1.	00	m ⁻ /s								
25	2.	.02	m°/s								
50	2.	.40	m°/s								
100	2.	.8/	m³/s								
200	3.	.42	m³/s								
500	4.	.32	m³/s								
1000	5.	.16	m ³ /s								
Climate Change Region	Eastern	Scotland									
Climate change	24	.0%									
adjustment		1.0	3,								
	4	ł.∠	m³/s								
Donor/ Analogues Used											
Calcs by:	Grace Thompson	Date:	27/03/2018								
Checked by:	David Cameron Date: 27/03/201										

Q/QMED

		POOLING G	ROUP DETAILS	3									
Oviginal Default Dealing Crown	_						Default Dealing Crown Catalyment Dealer	ntoro					
Creding Default Pooling Group	Distance	a Vaara of data			L CKEW	Discordonov	Station	Diotomoo CDM	ADEA	CAAD	FOEVT	EADI	LIDDEXT 2000
Station name	1 106			0.165	L-SKEW	Discordancy	Station	Distance SDM	ANEA 1.62	3AAN		TANL 1.00	0.00
/6011 (Coal Buill @ Coalbuill)	1.100	30	1.04	0.105	0.33	1.13	16011 (Coal Bulli @ Coalbulli)	1.100	0.01	1090	0.074	1.00	0.00
43616 (Fladdeo @ Optoli) 27051 (Crimple @ Burn Bridge)	1.359	42	4.51	0.314	0.42	0.92	27051 (Crimple @ Burn Bridge)	1.309	0.01	955	0.011	1.00	0.01
27031 (Chiliple @ Bulli Bildge)	1.004	40	4.00	0.219	0.13	0.27	20022 (Dave @ Hellingeleyeth)	1.004	7.00	1046	0.013	1.00	0.01
25019 (Lover @ Forthy)	2 104	27	4.23	0.240	0.42	1.70	25019 (Loven @ Fochy)	2 1 0 4	1.92	920	0.007	1.00	0.00
40006 (Camal @ Camalford)	2.134	0	4.55	0.342	0.35	0.95	20019 (Cemel @ Cemelfard)	2.134	10.50	1410	0.02	1.00	0.00
49008 (Carrier @ Carrierord)	2.205	9	11.50	0.129	-0.25	2.00	49006 (Callel @ Callelloid)	2.205	12.32	1410	0.013	1.00	0.00
26802 (Gypsey Race @ Kirby Grindalythe)	2.251	16	0.11	0.274	0.27	0.60	26802 (Gypsey Race @ Kirby Grindalythe)	2.251	15.85	/5/	0.03	1.00	0.00
25011 (Langdon Beck @ Langdon)	2.259	28	15.88	0.238	0.32	1.20	25011 (Langdon Beck @ Langdon)	2.259	12.79	1463	0.012	1.00	0.00
47022 (Tory Brook @ Newnnam Park)	2.288	22	7.23	0.262	0.09	0.96	47022 (Tory Brook @ Newnnam Park)	2.288	13.43	1403	0.023	0.94	0.01
49005 (Bollingey Stream @ Bolingey Cocks	\$ 2.317	5	5.78	0.288	0.26	0.95	49005 (Bollingey Stream @ Bolingey Coci	2.317	16.08	1044	0.023	0.99	0.01
71003 (Croasdale Beck @ Croasdale Flum	2.331	37	10.90	0.212	0.32	0.24	71003 (Croasdale Beck @ Croasdale Flu	2.331	10.71	1882	0.016	1.00	0.00
25003 (Trout Beck @ Moor House)	2.375	42	15.14	0.172	0.29	0.66	25003 (Trout Beck @ Moor House)	2.375	11.4	1905	0.041	1.00	0.00
27073 (Brompton Beck @ Snainton Ings)	2.415	34	0.82	0.198	0.06	0.71	27073 (Brompton Beck @ Snainton Ings)	2.415	8.06	721	0.237	1.00	0.01
91802 (Allt Leachdach @ Intake)	2.431	34	6.35	0.153	0.26	1.23	91802 (Allt Leachdach @ Intake)	2.431	6.54	2554	0.003	0.99	0.00
206006 (Annalong @ Recorder)	2.532	48	15.33	0.189	0.05	1.81	206006 (Annalong @ Recorder)	2.532	14.44	1704	0.023	0.98	0.00
27010 (Hodge Beck @ Bransdale Weir)	2.54	41	9.42	0.224	0.29	0.09	27010 (Hodge Beck @ Bransdale Weir)	2.54	18.82	987	0.009	1.00	0.00
54022 (Severn @ Plynlimon Flume)	2.561	38	14.99	0.156	0.17	1.12	54022 (Severn @ Plynlimon Flume)	2.561	8.75	2481	0.01	1.00	0.00
Total		530											
Weighted means				0.222	0.238								
ů.													
							Final Pooling Group Catchment Descripto	ors			-	-	
Station name	Distance	e Years of data	QMED AM	L-CV	L-SKEW	Discordancy	Station	Distance SDM	AREA	SAAR	FPEXT	FARL	UBBEXT 2000
76011 (Coal Burn @ Coalburn)	1 106	38	1.84	0.165	0.331	1.423	76011 (Coal Burn @ Coalburn)	1 1 0 6	1.63	1096	0.074	1.00	0.00
45816 (Haddeo @ Unton)	1.359	22	3 489	0.314	0.415	1.019	45816 (Haddeo @ Linton)	1.359	6.81	1210	0.011	1.00	0.01
27051 (Crimple @ Burn Bridge)	1 384	43	4 514	0.219	0.154	0.384	27051 (Crimple @ Burn Bridge)	1 384	8.17	855	0.013	1.00	0.01
29022 (Dovo @ Hollingslough)	1.646	26	4.005	0.215	0.154	0.775	29022 (Dovo @ Hollinsclough)	1.646	7.02	1246	0.017	1.00	0.00
25019 (Lover @ Fachy)	2 104	27	4.223	0.24	0.415	1.052	25033 (Dove @ Hollinsclough)	2 1 0 4	15.00	920	0.007	1.00	0.00
	2.134	37	4.303	0.042	0.35	1.952	23019 (Leveli @ Lasby)	2.134	15.05	030	0.02	1.00	0.00
26802 (Gypsey Race @ Kirby Grindalythe)	2.251	16	0.112	0.274	0.274	0.87	26802 (Gypsey Race @ Kirby Grindalythe)	2.251	15.85	757	0.03	1.00	0.00
25011 (Langdon Beck @ Langdon)	2.259	28	15.878	0.238	0.318	1.641	25011 (Langdon Beck @ Langdon)	2.259	12.79	1463	0.012	1.00	0.00
47022 (Tory Brook @ Newnham Park)	2.288	22	7.227	0.262	0.093	1.483	47022 (Tory Brook @ Newnham Park)	2.288	13.43	1403	0.023	0.94	0.01
71003 (Croasdale Beck @ Croasdale Flum	2.331	37	10.9	0.212	0.323	0.303	71003 (Croasdale Beck @ Croasdale Flu	2.331	10.71	1882	0.016	1.00	0.00
25003 (Trout Beck @ Moor House)	2.375	42	15.142	0.172	0.293	0.803	25003 (Trout Beck @ Moor House)	2.375	11.4	1905	0.041	1.00	0.00
27073 (Brompton Beck @ Snainton Ings)	2.415	34	0.816	0.198	0.056	1.235	27073 (Brompton Beck @ Snainton Ings)	2.415	8.06	721	0.237	1.00	0.01
27010 (Hodge Beck @ Bransdale Weir)	2.54	41	9.42	0.224	0.293	0.102	27010 (Hodge Beck @ Bransdale Weir)	2.54	18.82	987	0.009	1.00	0.00
203046 (Rathmore Burn @ Rathmore Bridg	2.755	33	10.77	0.136	0.104	1.333	203046 (Rathmore Burn @ Rathmore Brid	2.755	22.5	1043	0.072	1.00	0.00
22003 (Usway Burn @ Shillmoor)	2.77	13	16.17	0.282	0.311	1.487	22003 (Usway Burn @ Shillmoor)	2.77	21.88	1056	0.006	1.00	0.00
49003 (de Lank @ de Lank)	2.952	49	14.324	0.227	0.214	0.15	49003 (de Lank @ de Lank)	2.952	21.61	1628	0.064	1.00	0.00
41020 (Bevern Stream @ Clappers Bridge)	3.361	46	13.78	0.208	0.178	1.04	41020 (Bevern Stream @ Clappers Bridge	3.361	35.48	886	0.076	0.99	0.01
Total		537											
Weighted means				0.231	0.258								

DERIVING A POOLED GROWTH CURVE											
			-								
Site Va	alentines Burn	@Shevock co	onfluence		√	Ungauged site					
NGR N.	J 63491 28114	1				Gauged site					
	Attached Printouts										
W	WINFAP-FEH station details										
W	WINFAP-FEH summary information it gauged site										
	Initial Pooling Group Details										
Name	Name Valentines Burn										
Site of interest Valentines Burn@Shevock confluence											
Return period of	of interest	2, 5, 10, 25,	30, 50, 75, 100, 200,	200cc, 500, 100	0						
Other informati	ion										
Version of WIN	N-FAP FEH	Version 3.0									
Data Files		Other									
If 'Other' chose	en in Data										
Files enter file	path here	HiFlows v6.0	, SEPA gauges throug	gh WY2016							
	A	djustment/ C	hanges made to De	fault Pooling G	roup.						
	Also note site	s that were in	vestigated but retaine	d in the group (i.	e. for discordance	cy)					
				<u>A</u> duition/							
Station r	number		Name		Rea	ason					
490)05	ngey Stream	@ Bollingey Cock Br	D	Only 5 ye	ars of data					
540)22	Severn @	Plynlimon Flume	D	SAA	R 2481					
918	302	Allt Lead	chdach @ Intake	D	SAA	R 2554					
490)06	Came	I @ Camleford	D	Outlier on	Lmoments					
2060	006	Annalo	ng @ Recorder	D	Hist	orical					
220)03	Usway E	Burn @ Shilmoor	А	Increase re	ecord length					
490)03	de La	nk @ de Lank	А	Increase re	ecord length					
2030	046	Rathmore Bui	n @ Rathmore Bridge	А	Increase re	ecord length					
410)20	Bevern Strea	m @ Clappers Bridge	А	Increase re	ecord length					
			Final Pooling Group	Details							
			Heterogeneity Mea	asure							
H	1			Heterogeneous							
H	2		Accep	stably Homogene	eus						
			Goodness of F	ït							
Accepta	able Fit			Distribution							
V	\checkmark		Ge	neralised Logisti	С						
V			Genera	alised Extreme \	/alue						
			ŀ	Pearson Type iii							
			Ge	eneralised Pareto	2						
			Growth Curve Fit	tings							
Attached	print outo		WINFAP-FEH growth	i curve fittings							
Attached	WINFAP-FEH growth curve										
Name of Fina	al Pooling Gr	oup		Valentines Bu	rn Pooling						

A.4 Mill of Rothney at Shevock confluence

FEH STATISTICAL FLOOD ESTIMATION SUMMARY SHEET											
Site	Mill of Rothney @ Shevoc	k confluence									
NGR	NJ 62618 27705										
Type of	Peak flows for model										
problem/objective of	2, 5, 10, 25, 30, 50, 100, 1	200, 200cc, 500, 1000									
Type of catchment	Rural	lural									
QMED site cd	0.94	0.94 m ³ /s									
	Donor/ Analogue	Sites Considered									
Site name	Ythan@Ardlethen	Urie@Pitcaple	Deveron@Avochie								
Station number	10001	11004	9001								
NGR											
Proximity (km)	23.29	2.44	18								
Adjustment	1.009	0.97	1.01								
Site Chosen	Y	N	N								
QMED site adjusted by											
data transfer (m^3/s)	0.90	Specific Q (l/s/ha)	2.6								
Q _{inc} drowth curve factor	3.06										
Q_{100} growth curve factor	0.00 n e	Q100/ area (l/s/ha)	8.1								
Q ₁₀₀ (m ⁻ /s)	2.0										
Summary Dete											
	Summa		1 2								
FEH catchment area	0.40 km ²										
Adjusted catchment area	0.000 Km ²										
URBEXT 1990	0.000										
URBEXT 2010	0.000										
URBEXT Adjustment	Urbext2000										
	9	247									
SAAn Mothod Llood	EEH Statie	tical Method									
	T ETT Otatio										
Variation from Chosen											
Method		ירו									
Index Used		00	3,								
QMED	0	.90	m°/s								
5		.31	m³/s								
10	1	.60	m³/s								
25	2	.03	m³/s								
50	2	.43	m ³ /s								
100	2	.89	m ³ /s								
200	3	.45	m ³ /s								
500	4	.35	m ³ /s								
1000	5	.19	m ³ /s								
Climate Change Region	Eastern	Scotland									
Climate change		0%									
adjustment	24	.U /0									
200 + cc	4	4.3	m ³ /s								
Donor/ Analogues Used			÷								
Calcs by:	Grace Thompson	Date:	27/03/2018								
Checked by:	David Cameron	Date:	27/03/2018								

		POOLING G	ROUP DETAILS	3									
Original Default Pooling Group							Default Pooling Group Catchment Descri	ntore					
Station name	Distance	Years of data	OMED AM	L-CV	L-SKEW	Discordancy	Station	Distance SDM	AREA	SAAR	EPEXT	FARI	LIBBEXT 2000
76011 (Coal Burn @ Coalburn)	1.086	38	1.84	0.165	0.331	1 133	76011 (Coal Burn @ Coalburn)	1.086	1.63	1096	0.074	1.000	0.000
45816 (Haddeo @ Upton)	1.348	22	3.489	0.103	0.415	0.915	45816 (Haddeo @ Lipton)	1 3/8	6.81	1210	0.011	1.000	0.005
27051 (Crimple @ Burn Bridge)	1 389	13	4 514	0.219	0.154	0.265	27051 (Crimple @ Burn Bridge)	1 389	8.17	855	0.013	1.000	0.005
28033 (Dove @ Hollinsclough)	1.633	36	4.225	0.24	0.415	0.495	28033 (Dove @ Hollinsclough)	1.633	7.92	1346	0.007	1.000	0.000
49006 (Camel @ Camelford)	2 195	9	11.5	0.129	-0.252	2 851	49006 (Camel @ Camelford)	2 1 9 5	12.52	1418	0.007	1.000	0.000
25019 (Leven @ Eachy)	2.155	37	4 989	0.342	0.39	1 789	25019 (Leven @ Eashy)	2.155	15.00	830	0.010	1.000	0.000
25011 (Leven @ Lasby)	2 2/9	28	15.878	0.238	0.318	1.103	25013 (Levelin@ Easby)	2 2/9	12.00	1463	0.012	1.000	0.004
26802 (Gynsey Bace @ Kirby Grindalythe)	2 259	16	0.112	0.274	0.274	0.6	26802 (Gynsey Bace @ Kirby Grindalythe)	2 259	15.85	757	0.012	1.000	0.001
47022 (Tory Brook @ Newnham Park)	2 279	22	7 227	0.262	0.093	0.957	47022 (Tory Brook @ Newnham Park)	2 279	13.03	1403	0.003	0.942	0.000
71003 (Croasdale Beck @ Croasdale Flum	2 315	37	10.9	0.212	0.323	0.241	71003 (Croasdale Beck @ Croasdale Flu	2 3 1 5	10.40	1882	0.020	1 000	0.000
1000 (Croasdale Beek @ Croasdale Halin	2.010	5	5 777	0.299	0.356	0.05	19005 (Bollingov Stream @ Bolingov Cool	2.010	16.09	1044	0.010	0.001	0.000
25002 (Trout Book @ Moor House)	2.310	42	15 142	0.200	0.200	0.95	25002 (Trout Book @ Moor House)	2.310	11.4	1044	0.023	1 000	0.000
01902 (Allt Loophdoch @ Intoko)	2.330	94	6.25	0.172	0.253	1 220	01902 (Allt Loophdach @ Intaka)	2.330	6.54	2554	0.041	0.000	0.000
27072 (Prompton Back @ Spainton Ings)	2.400	24	0.00	0.109	0.257	0.709	27072 (Promoton Book @ Spainton Inge)	2.400	0.04	721	0.003	1 000	0.000
206006 (Appplong @ Recorder)	2.42	19	15.22	0.190	0.050	1.01	206006 (Appalong @ Bocordor)	2.42	14.44	1704	0.237	0.001	0.000
E4000 (Annaiong @ Necorder)	2.313	40	14.000	0.155	0.032	1.01	E4000 (Annaiong @ Hecolder)	2.519	0.75	0404	0.023	1.000	0.000
27010 (Hedge Book @ Pronedale Weir)	2.535	41	0.42	0.130	0.171	0.095	27010 (Hedge Book @ Propedale Weir)	2.555	10.75	097	0.01	1.000	0.000
27010 (Houge beck @ bialisuale well)	2.342	41	5.42	0.224	0.233	0.005	27010 (Houge beck @ bialisdale Well)	2.342	10.02	307	0.003	1.000	0.001
Total		500											
Weighted means		550		0.000	0.000								
weighted means				0.222	0.230								
	D . 1		01155 414	1.01/			Final Pooling Group Catchment Descripto	ors	1051			54.51	
Station name	Distance	Years of data	QMED AM	L-CV	L-SKEW	Discordancy	Station	Distance SDM	AREA	SAAR	FPEXT	FARL	URBEXT 2000
76011 (Coal Burn @ Coalburn)	1.086	38	1.84	0.165	0.331	1.509	76011 (Coal Burn @ Coalburn)	1.086	1.63	1096	0.074	1.000	0.000
45816 (Haddeo @ Upton)	1.348	22	3.489	0.314	0.415	1.042	45816 (Haddeo @ Upton)	1.348	6.81	1210	0.011	1.000	0.005
27051 (Crimple @ Burn Bridge)	1.389	43	4.514	0.219	0.154	0.404	27051 (Crimple @ Burn Bridge)	1.389	8.17	855	0.013	1.000	0.006
28033 (Dove @ Hollinsclough)	1.633	36	4.225	0.24	0.415	0.66	28033 (Dove @ Hollinsclough)	1.633	7.92	1346	0.007	1.000	0.000
25019 (Leven @ Easby)	2.2	37	4.989	0.342	0.39	1.958	25019 (Leven @ Easby)	2.2	15.09	830	0.02	1.000	0.004
25011 (Langdon Beck @ Langdon)	2.249	28	15.878	0.238	0.318	1.063	25011 (Langdon Beck @ Langdon)	2.249	12.79	1463	0.012	1.000	0.001
26802 (Gypsey Race @ Kirby Grindalythe)	2.259	16	0.112	0.274	0.274	0.581	26802 (Gypsey Race @ Kirby Grindalythe)	2.259	15.85	757	0.03	1.000	0.000
47022 (Tory Brook @ Newnham Park)	2.279	22	7.227	0.262	0.093	1.265	47022 (Tory Brook @ Newnham Park)	2.279	13.43	1403	0.023	0.942	0.014
71003 (Croasdale Beck @ Croasdale Flum	2.315	37	10.9	0.212	0.323	0.324	71003 (Croasdale Beck @ Croasdale Flu	2.315	10.71	1882	0.016	1.000	0.000
25003 (Trout Beck @ Moor House)	2.358	42	15.142	0.172	0.293	0.902	25003 (Trout Beck @ Moor House)	2.358	11.4	1905	0.041	1.000	0.000
27073 (Brompton Beck @ Snainton Ings)	2.42	34	0.816	0.198	0.056	1.255	27073 (Brompton Beck @ Snainton Ings)	2.42	8.06	721	0.237	1.000	0.008
206006 (Annalong @ Recorder)	2.519	48	15.33	0.189	0.052	2.704	206006 (Annalong @ Recorder)	2.519	14.44	1704	0.023	0.981	0.000
27010 (Hodge Beck @ Bransdale Weir)	2.542	41	9.42	0.224	0.293	0.106	27010 (Hodge Beck @ Bransdale Weir)	2.542	18.82	987	0.009	1.000	0.001
22003 (Usway Burn @ Shillmoor)	2.771	13	16.17	0.282	0.311	1.065	22003 (Usway Burn @ Shillmoor)	2.771	21.88	1056	0.006	1.000	0.000
49003 (de Lank @ de Lank)	2.943	49	14.324	0.227	0.214	0.163	49003 (de Lank @ de Lank)	2.943	21.61	1628	0.064	0.998	0.000
				1							1		
Total		506											
Weighted means		963		0.236	0.259								
· · · · · · · · · · · · · · · · · · ·							1				-		

DERIVING A POOLED GROWTH CURVE											
		-									
Site Mill of Rothney	@ Shevock co	onfluence		N	Ungauged site						
NGR NJ 62618 27705	5				Gauged site						
		Attached Printouts									
WINFAP-FEH station details											
WINFAP-FEH summary information if gauged site											
Initial Pooling Group Details											
Name	Mill of Rothne	ey .									
Site of interest Mill of Rothney @ Shevock confluence											
Return period of interest	2, 5, 10, 25, 3	30, 50, 100, 200, 500, 1000, 2	200+CC years								
Other information											
Version of WIN-FAP FEH	Version 3.0										
Data Files	Other										
lf 'Other' chosen in Data											
Files enter file path here	HiFlows v6.0,	SEPA gauges through WY20	016								
Adjustment/ Changes made to Default Pooling Group.											
Also note	sites that wer	e investigated but retained in	the group (i.e. fo	r discordancy)						
			Addition/								
Station number		Name	Deletion/	F	Reason						
			<u>M</u> ove/								
91802	Allt I	eachdach @ Intake	D	SA	AR 2554						
54022	Sever	n @ Plynimon Flume	D	SAAR 2481							
49005	Bollingey Stre	am @ Bolingey Cock Bridge	D	Only 5	vears of data						
49006	Ca	mel @ Camelford	D	Outlier o	on Lmoments						
206006	An	nalong @ Recorder	D	Histo	rical record						
22003	Usw	ay Burn @ Shilmoor	A	Increase	e record length						
49003	de	e Lank @ de Lank	A	Increase	e record length						
	•	Final Pooling Group Det	tails								
		Heterogeneity Measur	re								
H1		Possibly	Heterogeneous								
H2		Possibly	Heterogeoeous								
		Goodness of Fit									
Acceptable Fit		Dis	stribution								
\checkmark		Genera	alised Logistic								
\checkmark		Generalise	ed Extreme Value	9							
		Pear	son Type iii								
		Genera	alised Pareto								
		Growth Curve Fitting	s								
Attached with the		WINFAP-FEH growth curve fit	ttings								
Attached print outs		WINFAP-FEH growth curve	-								
Name of Final Pooling Gr	oup	M	lill of Rothney Po	oling							

FEH STATISTICAL FLOOD ESTIMATION SUMMARY SHEET Site Newton of Rothney @ Shevock confluence NGR NJ 63293 27854 Peak flows for model Type of 2, 5, 10, 25, 30, 50, 75, 100, 200, 200cc, 500, 1000 problem/objective of Rural Type of catchment QMED site cd 0.77 m³/s Donor/ Analogue Sites Considered Site name Ythan@ Ardlethen Urie@Pitcaple Deveron@Avochie Station number 10001 11004 9001 NGR Proximity (km) 21.60 2.49 20 Adjustment 1.010 0.97 1.08 Site Chosen Y Ν Ν QMED _{site} adjusted by 0.78 Specific Q (l/s/ha) 2.8 data transfer (m³/s) Q₁₀₀ growth curve factor 3.11 Q100/ area (l/s/ha) 8.8 2.4 Q₁₀₀ (m³/s) **Summary Data** 2.69 km² FEH catchment area 2.76 Adjusted catchment area km² **URBEXT 1990** 0.000 URBEXT 2010 0.000 URBEXT Adjustment Urbext2000 Method SAAR 832 FEH Statistical Method Method Used Variation from Chosen Method BFI Index Used 0.78 QMED m³/s 1.09 m³/s 1.33 10 m³/s 1.69 25 m³/s 2.03 50 m³/s 2.43 m³/s 100 2.91 200 m³/s 3.70 500 m³/s 4.43 1000 m³/s Eastern Scotland **Climate Change Region**

24.0%

3.6

Date:

Date:

A.5 Newton of Rothney at Shevock confluence

Grace Thompson

David Cameron

5

Climate change

Donor/ Analogues Used

adjustment

200 + cc

Calcs by:

Checked by:

m³/s

27/03/2018

27/03/2018

JBA

		POOLING G	ROUP DETAILS	6									
							Defends Deeller Orenne Oetelenenst Deeen						
Original Default Pooling Group	Distance					Discourds and	Default Pooling Group Catchment Descri	ptors	ADEA	0440	FDEVT	EADI	
Station name	Distance	e years of data	QMED AM	L-CV	L-SKEW	Discordancy	Station	Distance SDIM	AREA	SAAR	FPEXI	FARL	URBEXT 2000
76011 (Coal Burn @ Coalburn)	0.887	38	1.84	0.165	0.331	1.133	76011 (Coal Burn @ Coalburn)	0.887	1.63	1096	0.074	1.000	0.000
45816 (Haddeo @ Upton)	1.584	22	3.489	0.314	0.415	0.915	45816 (Haddeo @ Upton)	1.584	6.81	1210	0.011	1.000	0.005
27051 (Crimple @ Burn Bridge)	1.644	43	4.514	0.219	0.154	0.265	27051 (Crimple @ Burn Bridge)	1.644	8.17	855	0.013	1.000	0.006
28033 (Dove @ Hollinsclough)	1.867	36	4.225	0.24	0.415	0.495	28033 (Dove @ Hollinsclough)	1.867	7.92	1346	0.007	1.000	0.000
49006 (Camel @ Camelford)	2.44	9	11.5	0.129	-0.252	2.851	49006 (Camel @ Camelford)	2.44	12.52	1418	0.013	1.000	0.003
25019 (Leven @ Easby)	2.455	37	4.989	0.342	0.39	1.789	25019 (Leven @ Easby)	2.455	15.09	830	0.02	1.000	0.004
25011 (Langdon Beck @ Langdon)	2.492	28	15.878	0.238	0.318	1.197	25011 (Langdon Beck @ Langdon)	2.492	12.79	1463	0.012	1.000	0.001
26802 (Gypsey Race @ Kirby Grindalythe)	2.509	16	0.112	0.274	0.274	0.6	26802 (Gypsey Race @ Kirby Grindalythe)	2.509	15.85	757	0.03	1.000	0.000
27073 (Brompton Beck @ Snainton Ings)	2.51	34	0.816	0.198	0.056	0.708	27073 (Brompton Beck @ Snainton Ings)	2.51	8.06	721	0.237	1.000	0.008
47022 (Tory Brook @ Newnham Park)	2.523	22	7.227	0.262	0.093	0.957	47022 (Tory Brook @ Newnham Park)	2.523	13.43	1403	0.023	0.942	0.014
71003 (Croasdale Beck @ Croasdale Flum	2.533	37	10.9	0.212	0.323	0.241	71003 (Croasdale Beck @ Croasdale Flu	2.533	10.71	1882	0.016	1.000	0.000
91802 (Allt Leachdach @ Intake)	2.562	34	6.35	0.153	0.257	1.229	91802 (Allt Leachdach @ Intake)	2.562	6.54	2554	0.003	0.992	0.000
49005 (Bollingey Stream @ Bolingey Cocks	2.573	5	5.777	0.288	0.256	0.95	49005 (Bollingey Stream @ Bolingey Coc	2.573	16.08	1044	0.023	0.991	0.006
25003 (Trout Beck @ Moor House)	2.575	42	15.142	0.172	0.293	0.659	25003 (Trout Beck @ Moor House)	2.575	11.4	1905	0.041	1.000	0.000
54022 (Severn @ Plynlimon Flume)	2.722	38	14.988	0.156	0.171	1.115	54022 (Severn @ Plynlimon Flume)	2.722	8.75	2481	0.01	1.000	0.000
206006 (Annalong @ Recorder)	2.755	48	15.33	0.189	0.052	1.81	206006 (Annalong @ Recorder)	2.755	14.44	1704	0.023	0.981	0.000
27010 (Hodge Beck @ Bransdale Weir)	2.799	41	9.42	0.224	0.293	0.085	27010 (Hodge Beck @ Bransdale Weir)	2.799	18.82	987	0.009	1.000	0.001
Total		530							-				
Woighted means		000		0.221	0.229				-				
Weighted means				0.221	0.200						-		
							Encl Beeling Crown Catalyment Description					_	
	D1 1		01155 414	1.01/			Final Pooling Group Catchinent Descripte						
Station name	Distance	Years of data	QMED AM	L-CV	L-SKEW	Discordancy	Station	Distance SDM	AREA	SAAR	FPEXT	FARL	URBEX 1 2000
/6011 (Coal Burn @ Coalburn)	0.887	38	1.84	0.165	0.331	1.549	76011 (Coal Burn @ Coalburn)	0.887	1.63	1096	0.074	1.00	0.00
45816 (Haddeo @ Upton)	1.584	22	3.489	0.314	0.415	1.076	45816 (Haddeo @ Upton)	1.584	0.01	1210	0.011	1.00	0.01
27051 (Crimple @ Burn Bridge)	1.644	43	4.514	0.219	0.154	0.435	27051 (Crimple @ Burn Bridge)	1.644	8.17	855	0.013	1.00	0.01
28033 (Dove @ Hollinsclough)	1.867	36	4.225	0.24	0.415	0.709	28033 (Dove @ Hollinsclough)	1.867	7.92	1346	0.007	1.00	0.00
25019 (Leven @ Easby)	2.455	37	4.989	0.342	0.39	1.972	25019 (Leven @ Easby)	2.455	15.09	830	0.02	1.00	0.00
25011 (Langdon Beck @ Langdon)	2.492	28	15.878	0.238	0.318	1.527	25011 (Langdon Beck @ Langdon)	2.492	12.79	1463	0.012	1.00	0.00
26802 (Gypsey Race @ Kirby Grindalythe)	2.509	16	0.112	0.274	0.274	0.799	26802 (Gypsey Race @ Kirby Grindalythe)	2.509	15.85	757	0.03	1.00	0.00
27073 (Brompton Beck @ Snainton Ings)	2.51	34	0.816	0.198	0.056	1.395	27073 (Brompton Beck @ Snainton Ings)	2.51	8.06	721	0.237	1.00	0.01
47022 (Tory Brook @ Newnham Park)	2.523	22	7.227	0.262	0.093	1.405	47022 (Tory Brook @ Newnham Park)	2.523	13.43	1403	0.023	0.94	0.01
71003 (Croasdale Beck @ Croasdale Flum	2.533	37	10.9	0.212	0.323	0.31	71003 (Croasdale Beck @ Croasdale Flu	2.533	10.71	1882	0.016	1.00	0.00
25003 (Trout Beck @ Moor House)	2.575	42	15.142	0.172	0.293	0.883	25003 (Trout Beck @ Moor House)	2.575	11.4	1905	0.041	1.00	0.00
27010 (Hodge Beck @ Bransdale Weir)	2.799	41	9.42	0.224	0.293	0.115	27010 (Hodge Beck @ Bransdale Weir)	2.799	18.82	987	0.009	1.00	0.00
22003 (Usway Burn @ Shillmoor)	3.028	13	16.17	0.282	0.311	1.455	22003 (Usway Burn @ Shillmoor)	3.028	21.88	1056	0.006	1.00	0.00
49003 (de Lank @ de Lank)	3 182	49	14 324	0 227	0.214	0 159	49003 (de Lank @ de Lank)	3 182	21.61	1628	0.064	1.00	0.00
41020 (Bevern Stream @ Clappers Bridge)	3.611	46	13.78	0.208	0.178	1 211	41020 (Bevern Stream @ Clappers Bridge	3.611	35.48	886	0.076	0.99	0.01
(Seten Steam & Cappers Bridge)	0.011		10.70	0.200	00			0.011	00.10	0.00	0.070	0.00	0.01
Total		504											
Weighted means				0.236	0.269								

			DERIVING A POOLED GROWTH	CURVE							
Site	Newton of Rothr	ney @ Shevoo	k confluence			Ungauged site					
NGR	NJ 63293 27854					Gauged site					
			Attached Printouts								
	WINFAP-FEH station details										
	WINFAP-FEH summary information if gauged site										
Initial Pooling Group Details											
Name	Name Newton of Kotnney										
Site of inter	est	Newton of Ro	thney @ Shevock confluence								
Return perio	od of interest	2, 5, 10, 25,	30, 50, 100, 200, 500, 1000, 20	0+CC years							
Other inform	nation										
Version of V	VIN-FAP FEH	Version 3.0									
Data Files		Other									
If 'Other' cho	osen in Data										
Files enter f	ile path here	HIFlows v6.0	SEPA gauges through WY201	6							
		Adjustme	nt/ Changes made to Default	Pooling Group							
	Also note	e sites that we	ere investigated but retained in t	he group (i.e. for	discordancy)						
				<u>A</u> ddition/							
Statio	n numbor		Namo	<u>D</u> eletion/	-	0.000 n					
Statio	n number		Name	<u>M</u> ove/		leason					
				<u>I</u> nve <i>s</i> tigate							
4	9005	Bollingey Sti	ream @ Bollingey Cock Bridge	D	Only 5	years of data					
5	54022	Seve	rn @ Plynlimon Flume	D	SA	AR 2481					
ç	91802	Allt	Leachdach @ Intake	D	SA	AR 2554					
4	19006	C	Camel @ Camelford	D	Outlier of	on Lmoments					
2	06006	A	nnalong @ Recorder	D	Histor	rical record					
2	22003	Us	way Burn@ Shilmoor	А	Increase	e record length					
4	1020	Bevern S	Stream @ Clappers Bridge	А	Increase	e record length					
4	9003	C	le Lank @ de Lank	А	Increase	erecord length					
			Final Pooling Group Deta	ails							
			Heterogeneity Measure	•							
	H1		Possibly I	Heterogeneous							
	H2		Acceptably	/ Homogeneous							
		•	Goodness of Fit								
Acce	ptable Fit		Dist	tribution							
	\checkmark		General	ised Logistic							
			Generalised	d Extreme Value							
			Pears	on Type iii							
			Genera	lised Pareto							
			Growth Curve Fittings								
Attach	ad print outs		WINFAP-FEH growth curve fitti	ngs							
AllaCIR			WINFAP-FEH growth curve								
Name of Final Pooling Group Newton of Rothney Pooling											

B ReFH2 Additional Outputs

B.1 Valentines Burn

UK Design Flood Estimation

Generated on 29 January 2018 12:13:02 by jflownw Printed from the ReFH Flood Modelling software package, version 2.2.6029.28099

Summary of estimate using the Flood Estimation Handbook revitalised flood hydrograph method (ReFH)

Checksum: 98F9-6210

Site details

Site name: Valentines_Burn Easting: 363500 Northing: 828100 Country: Scotland Catchment Area (km²): 3.18 [3.23]* Using plot scale calculations: No Site description: None

Model run: 200 year

Summary of results

Rainfall - FEH 2013 (mm):	63.90	Total runoff (ML):	36.71
Total Rainfall (mm):	44.12	Total flow (ML):	77.49
		Peak flow (m ³ /s):	2.52
Peak Rainfall (mm):	12.00		

Parameters

Where the user has overriden a system-generated value, this original value is shown in square brackets after the value used.

* Indicates that the user locked the duration/timestep Rainfall parameters (Rainfall - FFH 2013 model)

Name		Value	User-defined?
Duration (hh:mm:ss)		04:30:00	No
Timestep (hh:mm:ss)		00:30:00	No
SCF (Seasonal correction factor)	*	0.71	No
ARF (Areal reduction factor)	*	0.97	No
Seasonality		Winter	n/a
oss model parameters			
Name		Value	User-defined?
Cini (mm)	1	101.32	No
Cmax (mm)	*	485.96	No
Use alpha correction factor		No	No
Alpha correction factor		n/a	No
Routing model parameters			
Name		Value	User-defined?
Tp (hr)		2.21	No
Up		0.65	No
Uk		0.8	No
Baseflow model parameters			
Name		Value	User-defined?
BF0 (m ³ /s)		0.07	No
BL (hr)	F	23.21	No
BR	F	1.22	No
Irbanisation parameters			
Name		Value	User-defined?
Urban area (km²)		0.18	No
Urbext 2000		0.04	No
Impervious runoff factor		0.7	No
Imperviousness factor		0.3	No
Tp scaling factor		0.5	No
Sewered area (km²)		0.00	Yes
$\int c_{1} u c_{2} c_{2} c_{3} $		0.00	Ves

B.2 Mill of Rothney Burn

UK Design Flood Estimation

Generated on 29 January 2018 12:19:16 by jflownw Printed from the ReFH Flood Modelling software package, version 2.2.6029.28099

Summary of estimate using the Flood Estimation Handbook revitalised flood hydrograph method (ReFH)

Checksum: 39CC-17C4

Site details Site name: Mill of Rothney Easting: 362600 Northing: 827700 Country: Scotland Catchment Area (km²): 3.4 [3.21]* Using plot scale calculations: No Site description: None

Model run: 200 year

Summary of results

Rainfall - FEH 2013 (mm):	60.35	Total runoff (ML):	32.91
Total Rainfall (mm):	40.54	Total flow (ML):	73.68
		Peak flow (m ³ /s):	2.58
Peak Rainfall (mm):	13.70		

Parameters

Where the user has overriden a system-generated value, this original value is shown in square brackets after the value used.
* Indicates that the user locked the duration/timestep

Rainfall parameters (Rainfall - FFH 2013 model)

Name		Value	User-defined?
Duration (hh:mm:ss)		03:30:00	No
Timestep (hh:mm:ss)		00:30:00	No
SCF (Seasonal correction factor)		0.7	No
ARF (Areal reduction factor)	*	0.96	No
Seasonality		Winter	n/a
Loss model parameters			
Name		Value	User-defined?
Cini (mm)	1	98.72	No
Cmax (mm)	·	498.47	No
Use alpha correction factor		No	No
Alpha correction factor		n/a	No
Routing model parameters			
Name		Value	User-defined?
Tp (hr)		2.01	No
Up		0.65	No
Uk		0.8	No
Baseflow model parameters			
Name		Value	User-defined?
BF0 (m ³ /s)		0.08	No
BL (hr)	- F	24.04	No
BR	•	1.24	No
Urbanisation parameters			
Name		Value	User-defined?
Urban area (km²)		0	No
Urbext 2000		0	No
Impervious runoff factor		0.7	No
Imperviousness factor		0.3	No
Tp scaling factor		0.5	No
Sewered area (km²)		0.00	Yes
Sewer capacity (m ³ /s)		0.00	Yes

B.3 Newton of Rothney Burn

UK Design Flood Estimation

Generated on 29 January 2018 12:24:36 by jflownw Printed from the ReFH Flood Modelling software package, version 2.2.6029.28099

Summary of estimate using the Flood Estimation Handbook revitalised flood hydrograph method (ReFH)

Checksum: F6CA-8B32

Site details Site name: Newton of Rothney Easting: 363950 Northing: 827900 Country: Scotland Catchment Area (km²): 2.75 [2.69]* Using plot scale calculations: No Site description: None

Model run: 200 year

Summary of results

Rainfall - FEH 2013 (mm):	58.85	Total runoff (ML):	26.31
Total Rainfall (mm):	39.07	Total flow (ML):	58.49
		Peak flow (m ³ /s):	2.23
Peak Rainfall (mm):	7.62		

Parameters

Where the user has overriden a system-generated value, this original value is shown in square brackets after the value used. * Indicates that the user locked the duration/timestep

Rainfall parameters (Rainfall - FEH 2013 model)

Name	Value	User-defined?
Duration (hh:mm:ss)	03:15:00	No
Timestep (hh:mm:ss)	00:15:00	No
SCF (Seasonal correction factor)	0.69	No
ARF (Areal reduction factor)	0.96	No
Seasonality	Winter	n/a
Loss model parameters		
Name	Value	User-defined?
Cini (mm)	100.45	No
Cmax (mm)	490.1	No
Use alpha correction factor	No	No
Alpha correction factor	n/a	No
Routing model parameters		
Name	Value	User-defined?
Tp (hr)	1.88	No
Up	0.65	No
Uk	0.8	No
Baseflow model parameters		
Name	Value	User-defined?
BF0 (m ³ /s)	0.06	No
BL (hr)	22.45	No
BR	1.22	No
Urbanisation parameters		
Name	Value	User-defined?
Urban area (km²)	0	No
Urbext 2000	0	No
Impervious runoff factor	0.7	No
Imperviousness factor	0.3	No
Tp scaling factor	0.5	No
Sewered area (km²)	0.00	Yes
Sewer capacity (m ³ /s)	0.00	Yes

C Technical Review Certificate

Technical Review Certificate

Project Name	Ellon, Inverurie and Insch FPS	
Project Number	2017s6743	
Project Manager	Caroline Anderton	
Work Carried Out by	Grace Thompson and Briony McIntosh	
Reviewer	David Cameron	
Subject of Review	Peak flow estimates for the Shevock and 3 tributaries	
Date	21 March 2018	
Revision	1.1	
	\4.Statistical\2017s6743_Shevock_Burn_v2.xlsm	
	\4.Statistical\2017s6743_Mill_of_Rothney_v2.xlsm	
	\4.Statistical\2017s6743_Newton_of_Rothney_v2.xlsm	
Documents used in Review	\4.Statistical\2017s6743_Valentines_Burn_v2.xlsm	
	\AIZ-JBAU-IN-00-CA-HM-0001-Flood-estimate-method-comparison- Insch-S0-P01.02.xlsx	
	\\Graphics\M2\Projects\AIZ-JBAU-IN-00-M2-HM-0001- Hydrology.mxd	
Applicable Standards or Guidance		

Use the following colour scheme to record recommendations:

Green – suggestion for improved / good practice but which is unlikely to change the project outcomes.

Amber - non-standard method or method not following guidance but unlikely to have impacted on results

Red - omission that could make the findings subject to challenge and which requires correction/further work.

SCOPE OF REVIEW:

Review FEH estimates (FEH RR, ReFH2 with FEH13 and FEH Statistical) for the Shevock, Valentine Burn, Mill of Rothney and Newton of Rothney.

DETAILED REVIEW COMMENTS:

Suitable approach comparing 3 FEH methods.

RECOMMENDATIONS:

Overall approach is suitable, but amber and red comments below need to be addressed before sign off.

PRELIMINARY CERTIFICATE (only required when comments are raised).

In respect of the project design described above, I have carried out a Review and consider the technical output sound, subject to the comments and recommendations listed above. Please inform me when you have considered these comments so that I may complete the Final Certificate.

Signature of Reviewer	Dir Com
Name of Reviewer	David Cameron
Date	21 March 2018

This document is classified as Commercial

N:\2017\Projects\2017s6743 - Dougall Baillie Associates - Ellon, Inverurie, & Insch FPS\AIZ-JBAU-HM\IN\Calcs\AIZ-JBAU-IN-00-CA-HM-0002-Hydrology\11. Tech Review\2017s6743 - Technical Review Certificate - Hydrology - Insch Peak Flow Estimates v1.0.docx

www.jbagroup.co.uk www.jbaconsulting.com www.jbarisk.com www.jbaenergy.com

JBA

JBA

	Aspect	V/N	Comments
	Has the appropriate calculation record		V
	heen completed?	•	Shevock:
	been completed.		The Shevock workbook includes estimates at two
			different locations using two different pooling groups
			It would be easier to follow (and also for reporting) if two
			workbooks were used - one for the Shevock LIS of Mill
			of Bothney and one for the US of the Urie confluence
			(including the DS of Mill of Bothney as it uses the same
			arouth ourse as US Mill of Pothpoy)
			Two workbooks have been created (Shevock Burn US
			MoP' and 'Shovork v?' BM
			OMED tob for the Showeak about the tidied up multiple
			QNED tab for the Shevock should be tidled up - multiple
			OMED table tidied in now workbacke. BM
			QMED labs lided in new workbooks - bin
			Boderaid with incorrect provimity, and adjustment values
			These should be serrected
			Summary tab call PS abould have the Catchmont
			Summary tab, cell bo should have the Catchinent
			Amended in new workbooks DM
			Summany tab aculd do with adding the leastion of the
			Summary tab could do with adding the location of the
			Deta tab for the Showedk, why are columna AV to PC in
			different execute?
			Gillerent colours?
			Formatting issue – amended in new workbook - BM
			Data tab – the selected distribution is the GL; but the best
			Tit was from the GEV and P3. Of the options on the data
			tab, the GEV should be used.
			GEV distribution selected in new workbook - BM
			Name of final pooling group is missing from the Derivation
			Amended in new workbook - BM
			Other watercourses:
			The naming of the sites on the FEH Statistical sheets for
			the Valentines Burn, Mill of Rotheny and Newton of
			Rotnney, needs to be corrected before they are included
			in a report.
			Amended in Version2 -G1
		NI	To be included as tout in the way of
	Has a method statement been	N	to be included as text in the report
	produced?	V	To be included as tout in the way of
	Does the analysis (or an	Y	to be included as text in the report
	accompanying report) include a		
_	description of the catchment and its		
'al	nooding processes?		
Je,	Are there any unusual features of the	N	ino unusual teatures.
ie)	catchment and how they will be taken		
9	into account?		
	Aspect	Revision	Comments
		required?	
		(Y,N,N/A)	
M	Has a review of existing data been	N	Ungauged catchments.
vie .	carried out?		
le)	Are flow and level stations present.	N	Ungauged catchments.
24	and closed stations as well as current		
31a	ones?		
° De	Have stations outside the HiFlows-IIK	N	Mill of Keithfield and Old Ravne level gauges used for To

This document is classified as Commercial

N:\2017\Projects\2017s6743 - Dougall Baillie Associates - Ellon, Inverurie, & Insch FPS\AIZ-JBAU-HM\IN\Calcs\AIZ-JBAU-IN-00-CA-HM-0002-Hydrolog\11. Tech Review\2017s6743 - Technical Review Certificate - Hydrology - Insch Peak Flow Estimates v1.0.docx

www.jbagroup.co.uk www.jbaconsulting.com www.jbarisk.com www.jbaenergy.com

JBA renewable energy

Page 2 of 5

	dataset been considered, e.g. temporary loggers?		estimation.
ŀ	Is it appropriate to update the flood	N	SEPA records updated.
	peak series from those in HiFlows-UK		
	if so has this been done?		
	Is there a potential donor site? Within	N	Shevock: Deveron at Avochie has been selected and is
	/ outside the reach?		appropriate
	Is the data quality reviewed - at a	N	Lingauged catchments
	minimum HiFlows-LIK classification		ongauged batonments.
	Is more detailed review of data and	N	Ungauged catchments Ulrie at Pitcaple has been
	ratings appropriate for this study has		subject to a rating review
	this been carried out?		Subject to a rating review.
	Has a historical review of data been	N	Included within main report
	carried out?		
	Does the report include plots and	N	Included within main report
	interpretation of flood peak time series		
	and flood event data?		
	Appropriate choice of flow calculation	N	Appropriate
	noint?		Appropriate.
ŀ	Has catchment boundary been	N	Vac
	checked and area revised?		163.
	What other catchment descriptors	N	LIBBEXT modified via national growth method
	have been checked - is this		on BEXT modified via national growth method.
	appropriate?		
ŀ	What method has been chosen?	N	FEH Statistical pooling for Shovock: FEH BB for other
	What method has been chosen:	IN	watercourses
	Is chosen method appropriate?	N	Ves given catchment sizes
	is chosen method appropriate:		res, given baterinent sizes.
	Has the standard methodology been	Ν	Not adjusted.
	adjusted?		
	QMED checked? Has the revised	N	Revised equation used.
	QMED equation been used (CEH,		
	2008)?		
	Has the revised method of data	N	Revised method used.
	transfer (CEH, 2008) been used?		
	Choice of donor appropriate?	Y	Potentially yes – Deveron at Avochie has been used for
			the Shevock and the Ythan at Ardlethen has been used
			for the other sites. However, a check should also be
			made against the Urie at Pitcaple in all cases (it is
			accepted that the rating for this site has not been fully
pa			accepted by SEPA and maybe subject to change, but a
140			check should still be made); and also Avochie for the
lei			smaller watercourses.
1			For the smaller watercourses the Urie at Pitcaple would
Ca			also be suitable however not fully accepted by SEPA
sti			Hence Ythan at Ardlethen used. The Deveron at Avochie
atti			less suitable for the smaller watercourses.
Ste	Choice of adjustment factor	N	Yes, assuming donors appropriate.
	appropriate?	N 1	Lin neuronal anti-line anti-
	Have QIVIED estimates been checked	N	ungauged catchments.
	for consistency with upstream and		
	oownstream gauges?	N/	Haden and an extension of the Charles of the second s
	Local data being used to full potential?	Y	Unclear – see comment on choice of donor and Pitcaple.
	Choice of adjustment factor	N	Yes, assuming donors appropriate.
	appropriate?		
	Estimation of growth factor	Ν	Yes, circa 3 in all cases.
	appropriate?		
	Growth factor Q2-Q100 is 1.8-3.0	Ν	Yes, but Mill of Rothney slightly larger than 3.
1 -		N	Voc
	Pooling group reviewed and details	IN	165

This document is classified as Commercial

N:\2017\Projects\2017s6743 - Dougall Baillie Associates - Ellon, Inverurie, & Insch FPS\AIZ-JBAU-HM\IN\Calcs\AIZ-JBAU-IN-00-CA-HM-0002-Hydrology\11. Tech Review\2017s6743 - Technical Review Certificate - Hydrology - Insch Peak Flow Estimates v1.0.docx

www.jbagroup.co.uk www.jbaconsulting.com www.jbarisk.com www.jbaenergy.com

JBA renewable energy

Page 3 of 5

-

	Has the removal and retention of sites	Ν	Yes
	Are there any flood peak records	N	No
	suitable for the derivation of single site	IN	NO
	growth curves?		
	Has enhanced single site analysis	Ν	N/A ungauged sites.
	Has a comparison of the pooled	N	N/A ungauged sites
	single site and enhanced growth		N/Y ungulgou shot.
	curves been undertaken?		
	Climate change considered?	Ν	Yes
	Has the standard methodology been	N	Standard methods used.
	adjusted?	N	EEU DD and DoEU2 with EEU12 rainfall applied to Durna
oti	used or ReFH?	IN	FERINA and HEFRZ WILL FERITS TAILIAN Applied to bullis.
m	Have any parameters been adjusted?	N	Parameters not adjusted, but comparison of Tp made at
II F	,, ,		Mill of Keithfield level only site (Old Rayne not suitable).
fal			Tp at this site was v. similar between FEH RR with
ain			catchment descriptors and observed Ip. FEH RR with
Ŕ	Has lag analysis been undertaken?	N	See previous comment
	Climate change considered?		
~		N	
sua	Have non FEH methods been used for small catchment estimates? If so have	N	N/A
รกน	these been justified and limitations		
5	acknowledged?		
	If the catchment is heavily urbanised	N	N/A
0	(URBEXT ₂₀₀₀ >0.150)		
	If there is a significant reservoir	N	N/A
nts	nut kept permanently full) and there is		
Jer	inadequate flood peak data available		
uų:	downstream of the reservoirs		
atc	If the catchment is permeable	N	N/A
0	(SPRHOST<20%), has the statistical		
	adjusted to remove non-flood annual		
nal	maximum flows?		
US C	Is the catchment is pumped?	Ν	N/A
	Have results for all methods been	N	Yes on spreadsheet and in report.
	summarised for comparison?		
	Is choice of method justified?	<u>N</u>	Yes.
	for spatial consistency e.g. at	IN	ongauged calchments.
S	confluences and along reaches?		
CK:	Have they been checked against flood	Ν	Flood history considered in report.
he	peaks in the gauged record, and any		
10	longer-term flood history?		
ina	Have the specific runoff rates been checked for spatial consistency?	N	Smaller watercourses similar.
E	Have the results been compared with	N	To be included in report if available
	any from other studies		
	Does the report comment on	Ν	To be included in report.
	uncertainty in the design flows?		
	Are the assumptions and limitations of	N	To be included in report.
DECI	the methods acknowledged?	inory Corti	finate in reland)
RESP	ONSE (only required when a Prelin	inary Certi	licate is raised)
I have	e addressed the comments raised und	er the Prelin	ninary Certificate.
Signa	ature		
- 3			

This document is classified as Commercial

JBA renewable energy

Page 4 of 5

Name	
Date	27/03/18 19/03/2018

FINAL CERTIFICATE

In respect of the project design described above, I have carried out a Review and consider the technical output sound, and any comments raised under a Preliminary Certificate have been satisfactorily addressed.

Signature of Reviewer	
Name of Reviewer	David Cameron
Date	02/05/2018

This document is classified as Commercial

N:\2017\Projects\2017s6743 - Dougall Baillie Associates - Ellon, Inverurie, & Insch FPS\AIZ-JBAU-HM\IN\Calcs\AIZ-JBAU-IN-00-CA-HM-0002-Hydrology\11. Tech Review\2017s6743 - Technical Review Certificate - Hydrology - Insch Peak Flow Estimates v1.0.docx

Page 5 of 5

www.jbagroup.co.uk www.jbaconsulting.com www.jbarisk.com www.jbaenergy.com

JBA renewable energy

JBA group

Offices at

Coleshill Doncaster Dublin Edinburgh Exeter Glasgow Haywards Heath Isle of Man Limerick Newcastle upon Tyne Newport Peterborough Saltaire Skipton Tadcaster Thirsk Wallingford Warrington

Registered Office

South Barn Broughton Hall SKIPTON North Yorkshire BD23 3AE United Kingdom

t:+44(0)1756 799919 e:info@jbaconsulting.com

Jeremy Benn Associates Ltd Registered in England

Registered in England 3246693

JBA Group Ltd is certified to: ISO 9001:2015 ISO 14001:2015 OHSAS 18001:2007

Visit our website www.jbaconsulting.com